
GeoPySpark Documentation
Release 0.4.1

Jacob Bouffard, James McClean, Eugene Cheipesh

May 24, 2018

Home

1 Why GeoPySpark? 3

2 Contact and Support 5
2.1 Changelog . 5
2.2 Contributing . 12
2.3 Core Concepts . 14
2.4 Working With Layers . 17
2.5 Catalog . 34
2.6 Map Algebra . 43
2.7 Visualizing Data in GeoPySpark . 48
2.8 TMS Servers . 52
2.9 Ingesting an Image . 56
2.10 Reading in Sentinel-2 Images . 57
2.11 Reading and Rasterizing Open Street Map Data . 60
2.12 geopyspark package . 62
2.13 geopyspark.geotrellis package . 115
2.14 geopyspark.vector_pipe package . 166

Python Module Index 171

i

ii

GeoPySpark Documentation, Release 0.4.1

GeoPySpark is a Python language binding library of the Scala library, GeoTrellis. Like GeoTrellis, this project is
released under the Apache 2 License.

GeoPySpark seeks to utilize GeoTrellis to allow for the reading, writing, and operating on raster data. Thus, its able
to scale to the data and still be able to perform well.

In addition to raster processing, GeoPySpark allows for rasters to be rendered into PNGs. One of the goals of this
project to be able to process rasters at web speeds and to perform batch processing of large data sets.

Home 1

https://github.com/locationtech/geotrellis

GeoPySpark Documentation, Release 0.4.1

2 Home

CHAPTER 1

Why GeoPySpark?

Raster processing in Python has come a long way; however, issues still arise as the size of the dataset increases.
Whether it is performance or ease of use, these sorts of problems will become more common as larger amounts of data
are made available to the public.

One could turn to GeoTrellis to resolve the aforementioned problems (and one should try it out!), yet this brings about
new challenges. Scala, while a powerful language, has something of a steep learning curve. This can put off those
who do not have the time and/or interest in learning a new language.

By having the speed and scalability of Scala and the ease of Python, GeoPySpark is then the remedy to this predica-
ment.

3

GeoPySpark Documentation, Release 0.4.1

4 Chapter 1. Why GeoPySpark?

CHAPTER 2

Contact and Support

If you need help, have questions, or would like to talk to the developers (let us know what you’re working on!) you
can contact us at:

• Gitter

• Mailing list

As you may have noticed from the above links, those are links to the GeoTrellis Gitter channel and mailing list. This
is because this project is currently an offshoot of GeoTrellis, and we will be using their mailing list and gitter channel
as a means of contact. However, we will form our own if there is a need for it.

2.1 Changelog

2.1.1 0.4.1

Bug Fixes

There was a bug in the Scala backend in 0.4.0 that caused certain layers on S3 to not be read. This has since been
resolved and 0.4.1 will have this fixed Scala backend. No other notable changes/fixes have been done between 0.4.0
and 0.4.1.

2.1.2 0.4.0

New Features

Rasterizing an RDD[Geometry]

Users can now rasterize an RDD[shapely.geometry] via the rasterize method.

5

https://gitter.im/geotrellis/geotrellis
https://locationtech.org/mailman/listinfo/geotrellis-user

GeoPySpark Documentation, Release 0.4.1

A Python RDD that contains shapely geomtries
geometry_rdd = ...

gps.rasterize(geoms=geometry_rdd, crs="EPSG:3857", zoom=11, fill_value=1)

ZFactor Calculator

zfactor_lat_lng_caculator and zfactor_caclulator are two new functions that will caculate the the
the zfactor for each Tile in a layer during the slope or hillshade operations. This is better than using a
single zfactor for all Tiles as Tiles at different lattitdues require different zfactors.

As mentioned above, there are two different forms of the calculator: zfactor_lat_lng_calculator and
zfactor_calculator. The former being used for layers that are in the LatLng projection while the latter for
layers in all other projections.

Using the zfactor_lat_lng_calculator

Create a zfactor_lat_lng_calculator which uses METERS for its calcualtions
calculator = gps.zfactor_lat_lng_calculator(gps.METERS)

A TiledRasterLayer which contains elevation data
tiled_layer = ...

Calcualte slope of the layer using the calcualtor
tiled_layer.slope(calculator)

Using the zfactor_calculator

We must provide a dict that maps lattitude to zfactor for our
given projection. Linear interpolation will be used on these
values to produce the correct zfactor for each Tile in the
layer.

mapped_factors = {
0.0: 0.1,
10.0: 1.5,
15.0: 2.0,
20.0, 2.5

}

Create a zfactor_calculator using the given mapped factors
calculator = gps.zfactor_calculator(mapped_factors)

PartitionStragies

With this release of GeoPySpark comes three different parition strategies: HashPartitionStrategy,
SpatialPartitionStrategy, and SpaceTimePartitionStrategy. All three of these are used to parti-
tion a layer given their specified inputs.

HashPartitionStrategy

HashPartitionStrategy is a partition strategy that uses Spark’s HashPartitioner to partition a layer. This
can be used on either SPATIAL or SPACETIME layers.

6 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Creates a HashPartitionStrategy with 128 partitions
gps.HashPartitionStrategy(num_partitions=128)

SpatialPartitionStrategy

SpatialPartitionStrategy uses GeoPySpark’s SpatialPartitioner during partitioning of the layer.
This strategy will try and partition the Tiles of a layer so that those which are near each other spatially will be in the
same partition. This will only work on SPATIAL layers.

Creates a SpatialPartitionStrategy with 128 partitions
gps.SpatialPartitionStrategy(num_partitions=128)

SpaceTimePartitionStrategy

SpaceTimePartitionStrategy uses GeoPySpark’s SpaceTimePartitioner during partitioning of the
layer. This strategy will try and partition the Tiles of a layer so that those which are near each other spatially and
temporally will be in the same partition. This will only work on SPACETIME layers.

Creates a SpaceTimePartitionStrategy with 128 partitions
and temporal resolution of 5 weeks. This means that
it will try and group the data in units of 5 weeks.
gps.SpaceTimePartitionStrategy(time_unit=gps.WEEKS, num_partitions=128, time_
→˓resolution=5)

Other New Features

• tobler method for TiledRasterLayer

• slope method for TiledRasterLayer

• local_max method for TiledRasterLayer

• mask layers by RDD[Geometry]

• with_no_data method for RasterLayer and TiledRasterLayer

• partitionBy method for RasterLayer and TiledRasterLayer

• get_partition_strategy method for CachableLayer

Bug Fixes

• TiledRasterLayer reproject bug fix

• TMS display fix

• CellType representation and conversion fixes

• get_point_values will now return the correct number of results for temporal layers

• Reading layers and values from Accumulo fix

• time_intervals will now enumerate correctly in catalog.query

• TileReader will now read the correct attribures file

2.1. Changelog 7

https://github.com/locationtech-labs/geopyspark/pull/567
https://github.com/locationtech-labs/geopyspark/pull/595
https://github.com/locationtech-labs/geopyspark/pull/602
https://github.com/locationtech-labs/geopyspark/pull/629
https://github.com/locationtech-labs/geopyspark/pull/631
https://github.com/locationtech-labs/geopyspark/pull/581
https://github.com/locationtech-labs/geopyspark/pull/589
https://github.com/locationtech-labs/geopyspark/pull/606
https://github.com/locationtech-labs/geopyspark/pull/620
https://github.com/locationtech-labs/geopyspark/pull/621
https://github.com/locationtech-labs/geopyspark/pull/623
https://github.com/locationtech-labs/geopyspark/pull/637

GeoPySpark Documentation, Release 0.4.1

2.1.3 0.3.0

New Features

Aggregating a Layer By Cell

It is now possible to aggregate the cells of all values that share a key in a layer via the aggregate_by_cell
method. This method is useful when you have a layer where you want to reduce all of the values by their key.

A tiled layer which contains duplicate keys with different values
that we'd like to reduce so that there is one value per key.
tiled_layer = ...

This will compute the aggregate SUM of each cell of values that share
a key within the layer.
tiled_layer.aggregate_by_cell(gps.Operation.SUM)

Similar to the above command, only this one is finding the STANDARD_DEVIATION
for each cell.
tiled_layer.aggregate_by_cell(gps.Operation.STANDARD_DEVIATION)

Unioning Layers Together

Through the union method, it is now possible to union together an arbitrary number of either RasterLayers or
TiledRasterLayers.

Layers to be unioned together
layers = [raster_layer_1, raster_layer_2, raster_layer_3]

unioned_layers = gps.union(layers)

Getting Point Values From a Layer

By using the get_point_values method, one can retrieve data points that falls on or near a given point.

from shapely.geometry import Point

The points we'd like to collect data at
p1 = Point(0, 0)
p2 = Point(1, 1)
p3 = Point(10, 10)

The tiled layer which will be queried
tiled_layer = ...

tiled_layer.get_point_values([p1, p2, p3])

The above code will return a [(Point, [float])] where each point given will be paired with all of the values it
covers (one for each band of the Tile).

It is also possible to pass in a dict to get_point_values.

8 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

labeled_points = {'p1': p1, 'p2': p2, 'p3': p3}

tiled_layer.get_point_values(labeled_points)

This will return a {k: (Point, [float])} which is similar to the above code only now the (Point,
[float]) is the value of the key that point had in the input dict.

Combining Bands of Multiple Layers

combine_bands will concatenate the bands of values that share a key together to produce a new, single value. This
new Tile will contain all of the bands from all of the values that shared a key from the given layers.

This method is most useful when you have multiple layers that contain a single band from a multiband image; and
you’d like to combine them together so that all or some of the bands are available from a single layer.

Three different layers that contain a single band from the
same scene
band_1_layer = ...
band_2_layer = ...
band_3_layer = ...

combined_layer will have values that contain three bands: the first
from band_1_layer, the second from band_2_layer, and the last from
band_3_layer
combined_layer = gps.combine_bands([band_1_layer, band_2_layer, band_3_layer])

Other New Features

• Merge method for RasterLayer and TiledRasterLayer

• Filter a RasterLayer or a TiledRasterLayer by time

• Polygonal Summary on all bands

• Better temporal resolution control when writing layers

• TiledRasterLayers can now perform the abs local operation

• TiledRasterLayers can now perform the ** local operation

Bug Fixes

• LayerType creation issue

• tuple serializer creation fix

• The TMS can now read from MultibandTile catalogs

• tileToLayout bug

• additional_jar_dirs fix

• stitch and saveStitch now work with MultibandTiles

2.1. Changelog 9

https://github.com/locationtech-labs/geopyspark/pull/503
https://github.com/locationtech-labs/geopyspark/pull/518
https://github.com/locationtech-labs/geopyspark/pull/519
https://github.com/locationtech-labs/geopyspark/pull/542
https://github.com/locationtech-labs/geopyspark/pull/550
https://github.com/locationtech-labs/geopyspark/pull/551
https://github.com/locationtech-labs/geopyspark/pull/494
https://github.com/locationtech-labs/geopyspark/pull/497
https://github.com/locationtech-labs/geopyspark/pull/508
https://github.com/locationtech-labs/geopyspark/pull/525
https://github.com/locationtech-labs/geopyspark/pull/532
https://github.com/locationtech-labs/geopyspark/pull/537

GeoPySpark Documentation, Release 0.4.1

2.1.4 0.2.2

0.2.2 fixes the naming issue brought about in 0.2.1 where the backend jar and the docs had the incorrect version
number.

geopyspark

• Fixed version numbers for docs and jar.

2.1.5 0.2.1

0.2.1 adds two major bug fixes for the catalog.query and geotiff.get functions as well as a few other minor
changes/additions.

geopyspark

• Updated description in setup.py.

geopyspark.geotrellis

• Fixed a bug in catalog.query where the query would fail if the geometry used for querying was in a
different projection than the source layer.

• partition_bytes can now be set in the geotiff.get function when reading from S3.

• Setting max_tile_size and num_partitions in geotiff.get will now work when trying to read
geotiffs from S3.

2.1.6 0.2.0

The second release of GeoPySpark has brought about massive changes to the library. Many more features have been
added, and some have been taken away. The API has also been overhauld, and code written using the 0.1.0 code will
not work with this version.

Because so much has changed over these past few months, only the most major changes will be discussed below.

geopyspark

• Removed GeoPyContext.

• Added geopyspark_conf function which is used to create a SparkConf for GeoPySpark.

• Changed how the environemnt is constructed when using GeoPySpark.

geopyspark.geotrellis

• A SparkContext instance is no longer needs to be passed in for any class or function.

• Renamed RasterRDD and TiledRasterRDD to RasterLayer and TiledRasterLayer.

• Changed how tile_to_layout and reproject work.

• Broked out rasterize, hillshade, cost_distance, and euclidean_distance into their own,
respective modules.

• Added the Pyramid class to layer.py.

• Renamed geotiff_rdd to geotiff.

• Broke out the options in geotiff.get.

• Constants are now orginized by enum classes.

• Avro is no longer used for serialization/deserialization.

10 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

• ProtoBuf is now used for serialization/deserialization.

• Added the render module.

• Added the color mdoule.

• Added the histogram moudle.

Documentation

• Updated all of the docstrings to reflect the new changes.

• All of the documentation has been updated to reflect the new chnagtes.

• Example jupyter notebooks have been added.

2.1.7 0.1.0

The first release of GeoPySpark! After being in development for the past 6 months, it is now ready for its initial
release! Since nothing has been changed or updated per se, we’ll just go over the features that will be present in 0.1.0.

geopyspark.geotrellis

• Create a RasterRDD from GeoTiffs that are stored locally, on S3, or on HDFS.

• Serialize Python RDDs to Scala and back.

• Perform various tiling operations such as tile_to_layout, cut_tiles, and pyramid.

• Stitch together a TiledRasterRDD to create one Raster.

• rasterize geometries and turn them into RasterRDD.

• reclassify values of Rasters in RDDs.

• Calculate cost_distance on a TiledRasterRDD.

• Perform local and focal operations on TiledRasterRDD.

• Read, write, and query GeoTrellis tile layers.

• Read tiles from a layer.

• Added PngRDD to make rendering to PNGs more efficient.

• Added RDDWrapper to provide more functionality to the RDD classes.

• Polygonal summary methods are now available to TiledRasterRDD.

• Euclidean distance added to TiledRasterRDD.

• Neighborhoods submodule added to make focal operations easier.

geopyspark.command

• GeoPySpark can now use a script to download the jar. Used when installing GeoPySpark from pip.

Documentation

• Added docstrings to all python classes, methods, etc.

• Core-Concepts, rdd, geopycontext, and catalog.

• Ingesting and creating a tile server with a greyscale raster dataset.

• Ingesting and creating a tile server with data from Sentinel.

2.1. Changelog 11

GeoPySpark Documentation, Release 0.4.1

2.2 Contributing

We value all kinds of contributions from the community, not just actual code. Perhaps the easiest and yet one of the
most valuable ways of helping us improve GeoPySpark is to ask questions, voice concerns or propose improvements
on the GeoTrellis Mailing List. As of now, we will be using this to interact with our users. However, this could change
depending on the volume/interest of users.

If you do like to contribute actual code in the form of bug fixes, new features or other patches this page gives you more
info on how to do it.

2.2.1 Building GeoPySpark

Ensure you have the ‘project dependencies<https://github.com/locationtech-
labs/geopyspark/blob/master/README.rst#requirements>‘_ installed on your machine.

Then follow the ‘Installing for Developers<https://github.com/locationtech-
labs/geopyspark/blob/master/README.rst#installing-for-developers>‘_ instructions in the project README.

2.2.2 Style Guide

We try to follow the PEP 8 Style Guide for Python Code as closely as possible, although you will see some variations
throughout the codebase. When in doubt, follow that guide.

2.2.3 Git Branching Model

The GeoPySpark team follows the standard practice of using the master branch as main integration branch.

2.2.4 Git Commit Messages

We follow the ‘imperative present tense’ style for commit messages. (e.g. “Add new EnterpriseWidgetLoader in-
stance”)

2.2.5 Issue Tracking

If you find a bug and would like to report it please go there and create an issue. As always, if you need some help join
us on Gitter to chat with a developer. As with the mailing list, we will be using the GeoTrellis Gitter channel until the
need arises to form our own.

2.2.6 Pull Requests

If you’d like to submit a code contribution please fork GeoPySpark and send us pull request against the master
branch. Like any other open source project, we might ask you to go through some iterations of discussion and refine-
ment before merging.

As part of the Eclipse IP Due Diligence process, you’ll need to do some extra work to contribute. This is part of the
requirement for Eclipse Foundation projects (see this page in the Eclipse wiki You’ll need to sign up for an Eclipse
account with the same email you commit to github with. See the Eclipse Contributor Agreement text
below. Also, you’ll need to signoff on your commits, using the git commit -s flag. See https://help.github.com/
articles/signing-tags-using-gpg/ for more info.

12 Chapter 2. Contact and Support

https://locationtech.org/mailman/listinfo/geotrellis-user
https://www.python.org/dev/peps/pep-0008/
https://gitter.im/locationtech/geotrellis
https://wiki.eclipse.org/Development_Resources/Handling_Git_Contributions#Git
https://help.github.com/articles/signing-tags-using-gpg/
https://help.github.com/articles/signing-tags-using-gpg/

GeoPySpark Documentation, Release 0.4.1

2.2.7 Eclipse Contributor Agreement (ECA)

Contributions to the project, no matter what kind, are always very welcome. Everyone who contributes code to
GeoTrellis will be asked to sign the Eclipse Contributor Agreement. You can electronically sign the Eclipse Contrib-
utor Agreement here.

2.2.8 Editing these Docs

Contributions to these docs are welcome as well. To build them on your own machine, ensure that sphinx and make
are installed.

Installing Dependencies

Ubuntu 16.04

> sudo apt-get install python-sphinx python-sphinx-rtd-theme

Arch Linux

> sudo pacman -S python-sphinx python-sphinx_rtd_theme

MacOS

brew doesn’t supply the sphinx binaries, so use pip here.

Pip

> pip install sphinx sphinx_rtd_theme

Building the Docs

Assuming you’ve cloned the GeoTrellis repo, you can now build the docs yourself. Steps:

1. Navigate to the docs/ directory

2. Run make html

3. View the docs in your browser by opening _build/html/index.html

Note: Changes you make will not be automatically applied; you will have to rebuild the docs yourself. Luckily the
docs build in about a second.

File Structure

There is currently not a file structure in place for docs. Though, this will change soon.

2.2. Contributing 13

https://www.eclipse.org/legal/ECA.php
https://www.eclipse.org/legal/ECA.php
https://github.com/locationtech/geotrellis

GeoPySpark Documentation, Release 0.4.1

2.3 Core Concepts

Because GeoPySpark is a binding of an existing project, GeoTrellis, some terminology and data representations have
carried over. This section seeks to explain this jargon in addition to describing how GeoTrellis types are represented
in GeoPySpark.

Before begining, all examples in this guide need the following boilerplate code:

import datetime
import numpy as np
import geopyspark as gps

2.3.1 Rasters

GeoPySpark differs in how it represents rasters from other geo-spatial Python libraries like rasterIO. In GeoPySpark,
they are represented by the Tile class. This class contains a numpy array (refered to as cells) that represents the
cells of the raster in addition to other information regarding the data. Along with cells, Tile can also have the
no_data_value of the raster.

Note: All rasters in GeoPySpark are represented as having multiple bands, even if the original raster just contained
one.

arr = np.array([[[0, 0, 0, 0],
[1, 1, 1, 1],
[2, 2, 2, 2]]], dtype=np.int16)

The resulting Tile will set -10 as the no_data_value for the raster
gps.Tile.from_numpy_array(numpy_array=arr, no_data_value=-10)

The resulting Tile will have no no_data_value
gps.Tile.from_numpy_array(numpy_array=arr)

2.3.2 Extent

Describes the area on Earth a raster represents. This area is represented by coordinates that are in some Coordinate
Reference System. Thus, depending on the system in use, the values that outline the Extent can vary. Extent can
also be refered to as a bounding box.

Note: The values within the Extent must be floats and not doubles.

extent = gps.Extent(0.0, 0.0, 10.0, 10.0)
extent

2.3.3 ProjectedExtent

ProjectedExtent describes both the area on Earth a raster represents in addition to its CRS. Either the EPSG
code or a proj4 string can be used to indicate the CRS of the ProjectedExtent.

Using an EPSG code

gps.ProjectedExtent(extent=extent, epsg=3857)

14 Chapter 2. Contact and Support

https://github.com/locationtech/geotrellis

GeoPySpark Documentation, Release 0.4.1

Using a Proj4 String

proj4 = "+proj=merc +lon_0=0 +k=1 +x_0=0 +y_0=0 +a=6378137 +b=6378137 +towgs84=0,0,0,
→˓0,0,0,0 +units=m +no_defs "
gps.ProjectedExtent(extent=extent, proj4=proj4)

2.3.4 TemporalProjectedExtent

Similar to ProjectedExtent, TemporalProjectedExtent describes the area on Earth the raster represents,
its CRS, and the time the data was represents. This point of time, called instant, is an instance of datetime.
datetime.

time = datetime.datetime.now()
gps.TemporalProjectedExtent(extent=extent, instant=time, epsg=3857)

2.3.5 TileLayout

TileLayout describes the grid which represents how rasters are orginized and assorted in a layer. layoutCols
and layoutRows detail how many columns and rows the grid itself has, respectively. While tileCols and
tileRows tell how many columns and rows each individual raster has.

Describes a layer where there are four rasters in a 2x2 grid. Each raster has 256
→˓cols and rows.

tile_layout = gps.TileLayout(layoutCols=2, layoutRows=2, tileCols=256, tileRows=256)
tile_layout

2.3.6 LayoutDefinition

LayoutDefinition describes both how the rasters are orginized in a layer as well as the area covered by the grid.

layout_definition = gps.LayoutDefinition(extent=extent, tileLayout=tile_layout)
layout_definition

2.3.7 Tiling Strategies

It is often the case that the exact layout of the layer is unknown. Rather than having to go through the effort of trying
to figure out the optimal layout, there exists two different tiling strategies that will produce a layout based on the data
they are given.

LocalLayout

LocalLayout is the first tiling strategy that produces a layout where the grid is constructed over all of the pixels
within a layer of a given tile size. The resulting layout will match the original resolution of the cells within the rasters.

Note: This layout cannot be used for creating display layers. Rather, it is best used for layers where operations
and analysis will be performed.

Creates a LocalLayout where each tile within the grid will be 256x256 pixels.
gps.LocalLayout()

2.3. Core Concepts 15

GeoPySpark Documentation, Release 0.4.1

Creates a LocalLayout where each tile within the grid will be 512x512 pixels.
gps.LocalLayout(tile_size=512)

Creates a LocalLayout where each tile within the grid will be 256x512 pixels.
gps.LocalLayout(tile_cols=256, tile_rows=512)

GlobalLayout

The other tiling strategy is GlobalLayout which makes a layout where the grid is constructed over the global extent
CRS. The cell resolution of the resulting layer be multiplied by a power of 2 for the CRS. Thus, using this strategy
will result in either up or down sampling of the original raster.

Note: This layout strategy should be used when the resulting layer is to be dispalyed in a TMS server.

Creates a GobalLayout instance with the default values
gps.GlobalLayout()

Creates a GlobalLayout instance for a zoom of 12
gps.GlobalLayout(zoom=12)

You may have noticed from the above two examples that GlobalLayout does not create layout for a given zoom
level by default. Rather, it determines what the zoom should be based on the size of the cells within the rasters. If you
do want to create a layout for a specific zoom level, then the zoom parameter must be set.

2.3.8 SpatialKey

SpatialKeys describe the positions of rasters within the grid of the layout. This grid is a 2D plane where the
location of a raster is represented by a pair of coordinates, col and row, respectively. As its name and attributes
suggest, SpatialKey deals solely with spatial data.

gps.SpatialKey(col=0, row=0)

2.3.9 SpaceTimeKey

Like SpatialKeys, SpaceTimeKeys describe the position of a raster in a layout. However, the grid is a 3D plane
where a location of a raster is represented by a pair of coordinates, col and row, as well as a z value that represents
a point in time called, instant. Like the instant in TemporalProjectedExtent, this is also an instance of
datetime.datetime. Thus, SpaceTimeKeys deal with spatial-temporal data.

gps.SpaceTimeKey(col=0, row=0, instant=time)

2.3.10 Bounds

Bounds represents the the extent of the layout grid in terms of keys. It has both a minKey and a maxKey attributes.
These can either be a SpatialKey or a SpaceTimeKey depending on the type of data within the layer. The
minKey is the left, uppermost cell in the grid and the maxKey is the right, bottommost cell.

16 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Creating a Bounds from SpatialKeys

min_spatial_key = gps.SpatialKey(0, 0)
max_spatial_key = gps.SpatialKey(10, 10)

bounds = gps.Bounds(min_spatial_key, max_spatial_key)
bounds

Creating a Bounds from SpaceTimeKeys

min_space_time_key = gps.SpaceTimeKey(0, 0, 1.0)
max_space_time_key = gps.SpaceTimeKey(10, 10, 1.0)

gps.Bounds(min_space_time_key, max_space_time_key)

2.3.11 Metadata

Metadata contains information of the values within a layer. This data pertains to the layout, projection, and extent
of the data contained within the layer.

The below example shows how to construct Metadata by hand, however, this is almost never required
and Metadata can be produced using easier means. For RasterLayer, one can call the method,
collect_metadata() and TiledRasterLayer has the attribute, layer_metadata.

Creates Metadata for a layer with rasters that have a cell type of int16 with the
→˓previously defined
bounds, crs, extent, and layout definition.
gps.Metadata(bounds=bounds,

crs=proj4,
cell_type=gps.CellType.INT16.value,
extent=extent,
layout_definition=layout_definition)

2.4 Working With Layers

Before begining, all examples in this guide need the following boilerplate code:

curl -o /tmp/cropped.tif https://s3.amazonaws.com/geopyspark-test/example-files/
→˓cropped.tif

import datetime
import numpy as np
import pyproj
import geopyspark as gps

from pyspark import SparkContext
from shapely.geometry import box, Point

conf = gps.geopyspark_conf(master="local[*]", appName="layers")
pysc = SparkContext(conf=conf)

2.4. Working With Layers 17

GeoPySpark Documentation, Release 0.4.1

2.4.1 How is Data Stored and Represented in GeoPySpark?

All data that is worked with in GeoPySpark is at some point stored within an RDD. Therefore, it is important to
understand how GeoPySpark stores, represents, and uses these RDDs throughout the library.

GeoPySpark does not work with PySpark RDDs, but rather, uses Python classes that are wrappers for Scala
classes that contain and work with a Scala RDD. Specifically, these wrapper classes are RasterLayer and
TiledRasterLayer, which will be discussed in more detail later.

Layers Are More Than RDDs

We refer to the Python wrapper classes as layers and not RDDs for two reasons: first, neither RasterLayer or
TiledRasterLayer actually extends PySpark’s RDD class; but more importantly, these classes contain more in-
formation than just the RDD. When we refer to a “layer”, we mean both the RDD and its attributes.

The RDDs contained by GeoPySpark layers contain tuples which have type (K, V), where K represents the key, and
V represents the value. V will always be a Tile, but K differs depending on both the wrapper class and the nature of
the data itself. More on this below.

RasterLayer

The RasterLayer class deals with untiled data—that is, the elements of the layer have not been normalized into a
single unified layout. Each raster element may have distinct resolutions or sizes; the extents of the constituent rasters
need not follow any orderly pattern. Essentially, a RasterLayer stores “raw” data, and its main purpose is to act as
a way station on the path to acquiring tiled data that adheres to a specified layout.

The RDDs contained by RasterLayer objects have key type, K, of either ProjectedExtent or
TemporalProjectedExtent, when the layer type is SPATIAL or SPACETIME, respectively.

TiledRasterLayer

TiledRasterLayer is the complement to RasterLayer and is meant to store tiled data. Tiled data has been
fitted to a certain layout, meaning that it has been regularly sampled, and it has been cut up into uniformly-sized,
non-overlapping pieces that can be indexed sensibly. The benefit of having data in this state is that now it will be easy
to work with. It is with this class that the user will be able to, for example, perform map algebra, create pyramids, and
save the layer. See below for the definitions and specific examples of these operations.

In the case of TiledRasterLayer, K is either SpatialKey or SpaceTimeKey .

2.4.2 RasterLayer

Creating RasterLayers

There are just two ways to create a RasterLayer: (1) through reading GeoTiffs from the local file system, S3, or
HDFS; or (2) from an existing PySpark RDD.

From PySpark RDDs

The first option is to create a RasterLayer from a PySpark RDD via the from_numpy_rdd() class method. This
step can be a bit more involved, as it requires the data within the PySpark RDD to be formatted in a specific way (see
How is Data Stored and Represented in GeoPySpark for more information).

18 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

The following example constructs an RDD from a tuple. The first element is a ProjectedExtent be-
cause we have decided to make the data spatial. If we were dealing with spatial-temproal data, then
TemporalProjectedExtent would be the first element. A Tile will always be the second element of the
tuple.

arr = np.ones((1, 16, 16), dtype='int')
tile = gps.Tile.from_numpy_array(numpy_array=np.array(arr), no_data_value=-500)

extent = gps.Extent(0.0, 1.0, 2.0, 3.0)
projected_extent = gps.ProjectedExtent(extent=extent, epsg=3857)

rdd = pysc.parallelize([(projected_extent, tile), (projected_extent, tile)])
multiband_raster_layer = gps.RasterLayer.from_numpy_rdd(layer_type=gps.LayerType.
→˓SPATIAL, numpy_rdd=rdd)
multiband_raster_layer

From GeoTiffs

The get() function in the geopyspark.geotrellis.geotiffmodule creates an instance of RasterLayer
from GeoTiffs. These files can be located on either your local file system, HDFS, or S3. In this example, a GeoTiff
with spatial data is read locally.

raster_layer = gps.geotiff.get(layer_type=gps.LayerType.SPATIAL, uri="file:///tmp/
→˓cropped.tif")
raster_layer

Using RasterLayer

This next section goes over the methods of RasterLayer. It should be noted that not all methods contained within
this class will be covered. More information on the methods that deal with the visualization of the contents of the layer
can be found in the Visualizing Data in GeoPySpark.

Converting to a Python RDD

By using to_numpy_rdd(), the base RasterLayer will be serialized into a Python RDD. This will convert all of
the first values within each tuple to either ProjectedExtent or TemporalProjectedExtent, and the second
value to Tile.

python_rdd = raster_layer.to_numpy_rdd()
python_rdd

python_rdd.first()

SpaceTime Layer to Spatial Layer

If you’re working with a spatial-temporal layer and would like to convert it to a spatial layer, then you can
use the to_spatial_layer`() method. This changes the keys of the RDD within the layer by converting
TemporalProjectedExtent to ProjectedExtent.

2.4. Working With Layers 19

GeoPySpark Documentation, Release 0.4.1

Creating the space time layer

instant = datetime.datetime.now()
temporal_projected_extent = gps.TemporalProjectedExtent(extent=projected_extent.
→˓extent,

epsg=projected_extent.epsg,
instant=instant)

space_time_rdd = pysc.parallelize([temporal_projected_extent, tile])
space_time_layer = gps.RasterLayer.from_numpy_rdd(layer_type=gps.LayerType.SPACETIME,
→˓numpy_rdd=space_time_rdd)
space_time_layer

Converting the SpaceTime layer to a Spatial layer

space_time_layer.to_spatial_layer()

Collecting Metadata

The Metadata of a layer contains information of the values within it. This data pertains to the layout, projection,
and extent of the data found within the layer.

collect_metadata() will return the Metadata of the layer that fits the layout given.

Collecting Metadata with the default LocalLayout()
metadata = raster_layer.collect_metadata()
metadata

Collecting Metadata with the default GlobalLayout()
raster_layer.collect_metadata(layout=gps.GlobalLayout())

Collecting Metadata with a LayoutDefinition
extent = gps.Extent(0.0, 0.0, 33.0, 33.0)
tile_layout = gps.TileLayout(2, 2, 256, 256)
layout_definition = gps.LayoutDefinition(extent, tile_layout)

raster_layer.collect_metadata(layout=layout_definition)

Reproject

reproject() will change the projection of the rasters within the layer to the given target_crs. This method
does not sample past the tiles’ boundaries.

The CRS of the layer before reprojecting
metadata.crs

The CRS of the layer after reprojecting
raster_layer.reproject(target_crs=3857).collect_metadata().crs

Tiling Data to a Layout

tile_to_layout() will tile and format the rasters within a RasterLayer to a given layout. The result of this

20 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

tiling is a new instance of TiledRasterLayer. This output contains the same data as its source RasterLayer,
however, the information contained within it will now be orginized according to the given layout.

During this step it is also possible to reproject the RasterLayer. This can be done by specifying the target_crs
to reproject to. Reprojecting using this method produces a different result than what is returned by the reproject
method. Whereas the latter does not sample past the boundaries of rasters within the layer, the former does. This is
important as anything with a GlobalLayout needs to sample past the boundaries of the rasters.

From Metadata

Create a TiledRasterLayer that contains the layout from the given Metadata.

Note: If the specified target_crs is different from what’s in the metadata, then an error will be thrown.

raster_layer.tile_to_layout(layout=metadata)

From LayoutDefinition

raster_layer.tile_to_layout(layout=layout_definition)

From LocalLayout

raster_layer.tile_to_layout(gps.LocalLayout())

From GlobalLayout

tiled_raster_layer = raster_layer.tile_to_layout(gps.GlobalLayout())
tiled_raster_layer

From A TiledRasterLayer

One can tile a RasterLayer to the same layout as a TiledRasterLayout.

Note: If the specifying target_crs is different from the other layer’s, then an error will be thrown.

raster_layer.tile_to_layout(layout=tiled_raster_layer)

2.4.3 TiledRasterLayer

Creating TiledRasterLayers

For this guide, we will just go over one initialization method for TiledRasterLayer, from_numpy_rdd. How-
ever, there are other ways to create this class. These additional creation strategies can be found in the [map algebra
guide].

2.4. Working With Layers 21

GeoPySpark Documentation, Release 0.4.1

From PySpark RDD

Like RasterLayers, TiledRasterLayers can be created from RDDs using from_numpy_rdd(). What
is different, however, is that Metadata must also be passed in during initialization. This makes creating
TiledRasterLayers this way a little bit more arduous.

The following example constructs an RDD from a tuple. The first element is a SpatialKey because we have decided
to make the data spatial. See How is Data Stored and Represented in GeoPySpark for more information.

data = np.zeros((1, 512, 512), dtype='float32')
tile = gps.Tile.from_numpy_array(numpy_array=data, no_data_value=-1.0)
instant = datetime.datetime.now()

layer = [(gps.SpaceTimeKey(row=0, col=0, instant=instant), tile),
(gps.SpaceTimeKey(row=1, col=0, instant=instant), tile),
(gps.SpaceTimeKey(row=0, col=1, instant=instant), tile),
(gps.SpaceTimeKey(row=1, col=1, instant=instant), tile)]

rdd = pysc.parallelize(layer)

extent = gps.Extent(0.0, 0.0, 33.0, 33.0)
layout = gps.TileLayout(2, 2, 512, 512)
bounds = gps.Bounds(gps.SpaceTimeKey(col=0, row=0, instant=instant), gps.
→˓SpaceTimeKey(col=1, row=1, instant=instant))
layout_definition = gps.LayoutDefinition(extent, layout)

metadata = gps.Metadata(
bounds=bounds,
crs='+proj=merc +lon_0=0 +k=1 +x_0=0 +y_0=0 +a=6378137 +b=6378137 +towgs84=0,0,0,

→˓0,0,0,0 +units=m +no_defs ',
cell_type='float32ud-1.0',
extent=extent,
layout_definition=layout_definition)

space_time_tiled_layer = gps.TiledRasterLayer.from_numpy_rdd(layer_type=gps.LayerType.
→˓SPACETIME,

numpy_rdd=rdd,
→˓metadata=metadata)
space_time_tiled_layer

Using TiledRasterLayers

This section will go over the methods found within TiledRasterLayer. Like with RasterLayer, not all meth-
ods within this class will be covered in this guide. More information on the methods that deal with the visualization
of the contents of the layer can be found in Visualizing Data in GeoPySpark; and those that deal with map algebra can
be found in the [map algebra guide].

Converting to a Python RDD

By using to_numpy_rdd(), the base TiledRasterLayerwill be serialized into a Python RDD. This will convert
all of the first values within each tuple to either SpatialKey or SpaceTimeKey, and the second value to Tile.

python_rdd = tiled_raster_layer.to_numpy_rdd()

22 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

python_rdd.first()

SpaceTime Layer to Spatial Layer

If you’re working with a spatiotemporal layer and would like to convert it to a spatial layer, then you can use the
to_spatial_layer()method. This changes the keys of the RDDwithin the layer by converting SpaceTimeKey
to SpatialKey.

Converting the SpaceTime layer to a Spatial layer

space_time_tiled_layer.to_spatial_layer()

Repartitioning

While not an RDD, TiledRasterLayer does contain an underlying RDD, and thus, it can be repartitioned using
the repartition() method.

Repartition the internal RDD to have 120 partitions
tiled_raster_layer.repartition(num_partitions=120)

Lookup

If there is a particular tile within the layer that is of interest, it is possible to retrieve it as a Tile using the lookup()
method.

min_key = tiled_raster_layer.layer_metadata.bounds.minKey

Retrieve the Tile that is located at the smallest column and row of the layer
tiled_raster_layer.lookup(col=min_key.col, row=min_key.row)

Masking

By using mask() method, the TiledRasterRDD can be masekd using one or more Shapely geometries.

layer_extent = tiled_raster_layer.layer_metadata.extent

Polygon to mask a region of the layer
mask = box(layer_extent.xmin,

layer_extent.ymin,
layer_extent.xmin + 20,
layer_extent.ymin + 20)

tiled_raster_layer.mask(geometries=mask)

mask_2 = box(layer_extent.xmin + 50,
layer_extent.ymin + 50,
layer_extent.xmax - 20,
layer_extent.ymax - 20)

(continues on next page)

2.4. Working With Layers 23

GeoPySpark Documentation, Release 0.4.1

(continued from previous page)

Multiple Polygons can be given to mask the layer
tiled_raster_layer.mask(geometries=[mask, mask_2])

Normalize

normalize() will linearly transform the data within the layer such that all values fall within a given range.

Normalizes the layer so that the new min value is 0 and the new max value is 60000
tiled_raster_layer.normalize(new_min=0, new_max=60000)

Pyramiding

When using a layer for a TMS server, it is important that the layer is pyramided. That is, we create a level-of-
detail hierarchy that covers the same geographical extent, while each level of the pyramid uses one quarter as many
pixels as the next level. This allows us to zoom in and out when the layer is being displayed without using ex-
traneous detail. The pyramid() method will produce an instance of Pyramid that will contain within it mul-
tiple TiledRasterLayers. Each layer corresponds to a zoom level, and the number of levels depends on the
zoom_level of the source layer. With the max zoom of the Pyramid being the source layer’s zoom_level, and
the lowest zoom being 0.

For more information on the Pyramid class, see the Pyramid section of the visualization guide.

This creates a Pyramid with zoom levels that go from 0 to 11 for a total of 12.
tiled_raster_layer.pyramid()

Reproject

This is similar to the reproject method for RasterLayer where the reprojection will not sample past the
tiles’ boundaries. This means the layout of the tiles will be changed so that they will take on a LocalLayout
rather than a GlobalLayout (read more about these layouts here). Because of this, whatever zoom_level the
TiledRasterLayer has will be changed to 0 since the area being represented changes to just the tiles.

The zoom_level and crs of the TiledRasterLayer before reprojecting
tiled_raster_layer.zoom_level, tiled_raster_layer.layer_metadata.crs

reprojected_tiled_raster_layer = tiled_raster_layer.reproject(target_crs=3857)

The zoom_level and crs of the TiledRasterLayer after reprojecting
reprojected_tiled_raster_layer.zoom_level, reprojected_tiled_raster_layer.layer_
→˓metadata.crs

Stitching

Using stitch() will produce a single Tile by stitching together all of the tiles within the TiledRasterLayer.
This can only be done with spatial layers, and is not recommended if the data contained within the layer is large, as it
can cause a crash due to the size of the resulting Tile.

Creates a Tile with an underlying numpy array with a size of (1, 6144, 1536).
tiled_raster_layer.stitch().cells.shape

24 Chapter 2. Contact and Support

core-concepts.ipynb#Tiling-Strategies

GeoPySpark Documentation, Release 0.4.1

Saving a Stitched Layer

The save_stitched() method both stitches and saves a layer as a GeoTiff.

Saves the stitched layer to /tmp/stitched.tif
tiled_raster_layer.save_stitched(path='/tmp/stitched.tif')

It is also possible to specify the regions of layer to be saved when it is stitched.

layer_extent = tiled_raster_layer.layer_metadata.layout_definition.extent

Only a portion of the stitched layer needs to be saved, so we will create a sub
→˓Extent to crop to.
sub_exent = gps.Extent(xmin=layer_extent.xmin + 10,

ymin=layer_extent.ymin + 10,
xmax=layer_extent.xmax - 10,
ymax=layer_extent.ymax - 10)

tiled_raster_layer.save_stitched(path='/tmp/cropped-stitched.tif', crop_bounds=sub_
→˓exent)

In addition to the sub Extent, one can also choose how many cols and rows will be
→˓in the saved in the GeoTiff.
tiled_raster_layer.save_stitched(path='/tmp/cropped-stitched-2.tif',

crop_bounds=sub_exent,
crop_dimensions=(1000, 1000))

Tiling Data to a Layout

This is similar to RasterLayer’s tile_to_layout method, except for one important detail. If performing a
tile_to_layout() on a TiledRasterLayer that contains a zoom_level, that zoom_level could be lost
or changed depending on the layout and/or target_crs chosen. Thus, it is important to keep that in mind in
retiling a TiledRasterLayer.

Original zoom_level of the source TiledRasterLayer
tiled_raster_layer.zoom_level

zoom_level will be lost in the resulting TiledRasterlayer
tiled_raster_layer.tile_to_layout(layout=gps.LocalLayout())

zoom_level will be changed in the resulting TiledRasterLayer
tiled_raster_layer.tile_to_layout(layout=gps.GlobalLayout(), target_crs=3857)

zoom_level will reamin the same in the resulting TiledRasterLayer
tiled_raster_layer.tile_to_layout(layout=gps.GlobalLayout(zoom=11))

Getting Point Values

get_point_values() takes a collection of shapely.geometry.Points and returns the value(s) that are at
the given point in the layer. The number of values returned depends on the number of bands the values have, as there
will be one value per band.

2.4. Working With Layers 25

GeoPySpark Documentation, Release 0.4.1

It is also possible to pass in a ResampleMethod to this method, but not all are supported. The following are all of
the ResampleMethods that can be used to calculate point values:

• ResampleMethod.NEAREST_NEIGHBOR

• ResampleMethod.BILINEAR

• ResampleMethod.CUBIC_CONVOLUTION

• ResampleMethod.CUBIC_SPLINE

Getting the Point Values From a SPATIAL Layer

When using get_point_values on a layer with a LayerType of SPATIAL, the results will be paired as
(shapely.geometry.Point, [float]). Where each given Point will be paired with the values it in-
tersects.

Creating the points
extent = tiled_raster_layer.layer_metadata.extent

p1 = Point(extent.xmin, extent.ymin + 0.5)
p2 = Point(extent.xmax , extent.ymax - 1.0)

Giving a [shapely.geometry.Point] to get_point_values

When points is given as a [shapely.geometry.Point], then the ouput will be a [(shapely.geometry.
Point, [float])].

tiled_raster_layer.get_point_values(points=[p1, p2])

Giving a {k: shapely.geometry.Point} to get_point_values

When points is given as a {k: shapely.geometry.Point}, then the ouput will be a {k: (shapely.
geometry.Point, [float])}.

tiled_raster_layer.get_point_values(points={'point 1': p1, 'point 2': p2})

Getting the Point Values From a SPACETIME Layer

When using get_point_values on a layer with a LayerType of SPACETIME, the results will be paired as
(shapely.geometry.Point, [(datetime.datetime, [float])]). Where each given Point will
be paired with a list of tuples that contain the values it intersects and those values’ corresponding timestamps.

st_extent = space_time_tiled_layer.layer_metadata.extent

p1 = Point(st_extent.xmin, st_extent.ymin + 0.5)
p2 = Point(st_extent.xmax , st_extent.ymax - 1.0)

26 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Giving a [shapely.geometry.Point] to get_point_values

When points is given as a [shapely.geometry.Point], then the ouput will be a [(shapely.geometry.
Point, [(datetime.datetime, [float])])].

space_time_tiled_layer.get_point_values(points=[p1, p2])

Giving a {k: shapely.geometry.Point} to get_point_values

When points is given as a {k: shapely.geometry.Point}, then the ouput will be a {k: (shapely.
geometry.Point, [(datetime.datetime, [float])])}.

space_time_tiled_layer.get_point_values(points={'point 1': p1, 'point 2': p2})

Aggregating the Values of Each Cell

aggregate_by_cell() will compute an aggregate summary for each cell of all values for each key. Thus, if there
are multiple copies of the same key in the layer, then the resulting layer will contain just a single instance of that key
with its corresponding value being the aggregate summary of all the values that share that key.

Not all Operations are supported. The following ones can be used in aggregate_by_cell:

• Operation.SUM

• Operation.MIN

• Operation.MAX

• Operation.MEAN

• Operation.VARIANCE

• Operation.STANDARD_DEVIATION

unioned_layer = gps.union(layers=[tiled_raster_layer, tiled_raster_layer + 1])

Sum the values of the unioned_layer
unioned_layer.aggregate_by_cell(operation=gps.Operation.SUM)

Get the max value for each cell
unioned_layer.aggregate_by_cell(operation=gps.Operation.MAX)

2.4.4 General Methods

There exist methods that are found in both RasterLayer and TiledRasterLayer. These methods tend to
perform more general analysis/tasks, thus making them suitable for both classes. This next section will go over these
methods.

Note: In the following examples, both RasterLayers and TiledRasterLayers will be used. However, they
can easily be subsituted with the other class.

2.4. Working With Layers 27

GeoPySpark Documentation, Release 0.4.1

Unioning Layers Togther

To combine the contents of multiple layers together, one can use the union() method. This will produce either a
new RasterLayer or TiledRasterLayer that contains all of the elements from the given layers.

Note: The resulting layer can contain duplicate keys.

gps.union(layers=[tiled_raster_layer, tiled_raster_layer])

Selecting a SubSection of Bands

To select certain bands to work with, the bands method will take either a single or collection of band indices and will
return the subset as a new RasterLayer or TiledRasterLayer.

Note: There could high performance costs if operations are performed between two sub-bands of a large dataset. Thus,
if you’re working with a large amount of data, then it is recommended to do band selection before reading them in.

Selecting the second band from the layer
multiband_raster_layer.bands(1)

Selecting the first and second bands from the layer
multiband_raster_layer.bands([0, 1])

Combining Bands of Two Or More Layers

The combine_bands() method will concatenate the bands of values that share a key between two or more layers.
Thus, the resulting layer will contain a new Tile for each shared key where the Tile will contain all of the bands
from the given layers.

The order in which the layers are passed into combine_bands matters. Where the resulting values’ bands will be
ordered based on their position of their respective layer.

Setting up example RDD
twos = np.ones((1, 16, 16), dtype='int') + 1
twos_tile = gps.Tile.from_numpy_array(numpy_array=np.array(twos), no_data_value=-500)

twos_rdd = pysc.parallelize([(projected_extent, twos_tile)])
twos_raster_layer = gps.RasterLayer.from_numpy_rdd(layer_type=gps.LayerType.SPATIAL,
→˓numpy_rdd=twos_rdd)

The resulting values of the layer will have 2 bands: the first will be all ones,
and the last band will be all twos
gps.combine_bands(layers=[multiband_raster_layer, twos_raster_layer])

The resulting values of the layer will have 2 bands: the first will be all twos and
→˓the
other band will be all ones
gps.combine_bands(layers=[twos_raster_layer, multiband_raster_layer])

Collecting the Keys of a Layer

To collect all of the keys of a layer, use the collect_keys method.

28 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Returns a list of ProjectedExtents
multiband_raster_layer.collect_keys()

Returns a list of a SpatialKeys
tiled_raster_layer.collect_keys()

Returns a list of SpaceTimeKeys
space_time_tiled_layer.collect_keys()

Filtering a Layer By Times

Using the filter_by_times method will produce a layer whose values fall within the given time interval(s).

Filtering By a Single Instant

A single datetime.datetime instance can be used to filter the layer. If that is the case then only exact matches
with the given time will be kept.

space_time_layer.filter_by_times(time_intervals=[instant])

Filtering By Intervals

Various time intervals can also be given as well, and any keys whose instant falls within the time spans will be
kept in the layer.

end_date_1 = instant + datetime.timedelta(days=3)
end_date_2 = instant + datetime.timedelta(days=5)

Will filter out any value whose key does not fall in the range of
instant and end_date_1
space_time_layer.filter_by_times(time_intervals=[instant, end_date_1])

Will filter out any value whose key does not fall in the range of
instant and end_date_1 OR whose key does not match end_date_2
space_time_layer.filter_by_times(time_intervals=[instant, end_date_1, end_date_2])

Converting the Data Type of the Rasters’ Cells

The convert_data_type method will convert the types of the cells within the rasters of the layer to a new data
type. The noData value can also be set during this conversion, and if it’s not set, then there will be no noData value
for the resulting rasters.

The data type of the cells before converting
metadata.cell_type

Changing the cell type to int8 with a noData value of -100.
raster_layer.convert_data_type(new_type=gps.CellType.INT8, no_data_value=-100).
→˓collect_metadata().cell_type

2.4. Working With Layers 29

GeoPySpark Documentation, Release 0.4.1

Changing the cell type to int32 with no noData value.
raster_layer.convert_data_type(new_type=gps.CellType.INT32).collect_metadata().cell_
→˓type

Reclassify Cell Values

reclassify changes the cell values based on the value_map and classification_strategy given. In
addition to these two parameters, the data_type of the cells also needs to be given. This is either int or float.

Values of the first tile before being reclassified
multiband_raster_layer.to_numpy_rdd().first()[1]

Change all values greater than or equal to 1 to 10
reclassified = multiband_raster_layer.reclassify(value_map={1: 10},

data_type=int,
classification_strategy=gps.

→˓ClassificationStrategy.GREATER_THAN_OR_EQUAL_TO)
reclassified.to_numpy_rdd().first()[1]

Merging the Values of a Layer Together

By using the merge method, all values that share a key within the layer will be merged together to form a new, single
value. This is accomplished by replacing the cells of one value with another’s. However, not all cells, if any, may
be replaced. When merging the cell of values, the following steps are taken to determine if a cell’s value should be
changed:

1. If the cell contains a NoData value, then it will be replaced.

2. If no NoData value is set, then a cell with a vlue of 0 will be replaced.

3. if neither of the above are true, then the cell retains its value.

Creating the layers
no_data = np.full((1, 4, 4), -1)
zeros = np.zeros((1, 4, 4))

def create_layer(no_data_value=None):
data_tile = gps.Tile.from_numpy_array(numpy_array=no_data, no_data_value=no_data_

→˓value)
zeros_tile = gps.Tile.from_numpy_array(numpy_array=zeros, no_data_value=no_data_

→˓value)

layer_rdd = pysc.parallelize([(projected_extent, data_tile), (projected_extent,
→˓zeros_tile)])

return gps.RasterLayer.from_numpy_rdd(layer_type=gps.LayerType.SPATIAL, numpy_
→˓rdd=layer_rdd)

Resulting layer has a no_data_value of -1
no_data_layer = create_layer(-1)

Resutling layer has no no_data_value
no_no_data_layer = create_layer()

30 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

The resulting merged value will be all zeros since -1 is the noData value
no_data_layer.merge()

The resulting merged value will be all -1's as ``no_data_value`` was set.
no_no_data_layer.merge()

Mapping Over the Cells

It is possible to work with the cells within a layer directly via the map_cells method. This method takes a function
that expects a numpy array and a noData value as parameters, and returns a new numpy array. Thus, the function given
would have the following type signature:

def input_function(numpy_array: np.ndarray, no_data_value=None) -> np.ndarray

The given function is then applied to each Tile in the layer.

Note: In order for this method to operate, the internal RDD first needs to be deserialized from Scala to Python and
then serialized from Python back to Scala. Because of this, it is recommended to chain together all functions to avoid
unnecessary serialization overhead.

def add_one(cells, _):
return cells + 1

Mapping with a single funciton
raster_layer.map_cells(add_one)

def divide_two(cells, _):
return (add_one(cells) / 2)

Chaning together two functions to be mapped
raster_layer.map_cells(divide_two)

Mapping Over Tiles

Like map_cells, map_tiles maps a given function over all of the Tiles within the layer. It takes a function that
expects a Tile and returns a Tile. Therefore, the input function’s type signature would be this:

def input_function(tile: Tile) -> Tile

Note: In order for this method to operate, the internal RDD first needs to be deserialized from Scala to Python and
then serialized from Python back to Scala. Because of this, it is recommended to chain together all functions to avoid
unnecessary serialization overhead.

def minus_two(tile):
return gps.Tile.from_numpy_array(tile.cells - 2, no_data_value=tile.no_data_value)

raster_layer.map_tiles(minus_two)

Calculating the Histogram for the Layer

It is possible to calculate the histogram of a layer either by using the get_histogram or the
get_class_histogram method. Both of these methods produce a Histogram, however, the way the data
is represented within the resulting histogram differs depending on the method used. get_histogram will produce

2.4. Working With Layers 31

GeoPySpark Documentation, Release 0.4.1

a histogram whose values are floats. Whereas get_class_histogram returns a histogram whose values are
ints.

For more informaiton on the Histogram class, please see the Histogram [guide].

Returns a Histogram whose underlying values are floats
tiled_raster_layer.get_histogram()

Returns a Histogram whose underlying values are ints
tiled_raster_layer.get_class_histogram()

Finding the Quantile Breaks for the Layer

If you wish to find the quantile breaks for a layer without a Histogram, then you can use the
get_quantile_breaks method.

tiled_raster_layer.get_quantile_breaks(num_breaks=3)

Quantile Breaks for Exact Ints

There is another version of get_quantile_breaks called get_quantile_breaks_exact_int that will
count exact integer values. However, if there are too many values within the layer, then memory errors could occur.

tiled_raster_layer.get_quantile_breaks_exact_int(num_breaks=3)

Finding the Min and Max Values of a Layer

The get_min_max method will find the min and max value for the layer. The result will always be (float,
float) regardless of the data type of the cells.

tiled_raster_layer.get_min_max()

Converting the Values of a Layer to PNGs

Via the to_png_rdd method, one can convert each value within a layer to a PNG in the form of bytes. In order
to convert each value to a PNG, one needs to supply a ColorMap. For more information on the ColorMap class,
please see the ColorMap section of the docs.

In addition to converting each value to a PNG, the resulting collection of (K, V)s will be held in a Python RDD.

hist = tiled_raster_layer.get_histogram()
cmap = gps.ColorMap.build(hist, 'viridis')

tiled_raster_layer.to_png_rdd(color_map=cmap)

Converting the Values of a Layer to GeoTiffs

Similar to to_png_rdd, only to_geotiff_rdd will return a Python RDD[(K, bytes)] where the bytes
represent a GeoTiff.

32 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Selecting a StorageMethod

There are two different ways the segments of a GeoTiff can be formatted: StorageMethod.STRIPED
or StorageMethod.TILED. This is represented by the storage_method parameter. By default,
StorageMethod.STRIPED is used.

Selecting the Size of the Segments

There are two different parameters that control the size of each segment: rows_per_strip and
tile_dimensions. Only one of these values needs to be set, and that is determined by what the
storage_method is.

If the storage_method is StorageMethod.STRIPED, then rows_per_strip will be the parameter to
change. By default, the rows_per_strip will be calculated so that each strip is 8K or less.

If the storage_method is StorageMethod.TILED, then tile_dimensions can be set. This is given as a
(int, int) where the first value is the number of cols and the second is the number of rows`. By default, the
tile_dimensions is (256, 256).

Selecting a CompressionMethod

The two types of compressions that can be chosen are: Compression.NO_COMPRESSION or Compression.
DEFLATE_COMPRESSION. By default, the compression parameter is set to Compression.
NO_COMPRESSION.

Selecting a ColorSpace

The color_space parameter determines how the colors should be organized in each GeoTiff. By default, it’s
ColorSpace.BLACK_IS_ZERO.

Passing in a ColorMap

A ColorMap instance can be passed in so that the resulting GeoTiffs are in a different gradiant. By default,
color_map is None. To learn more about ColorMap, see the ColorMap section of the docs.

Creates an RDD[(K, bytes)] with the default parameters
tiled_raster_layer.to_geotiff_rdd()

Creates an RDD whose GeoTiffs are tiled with a size of (128, 128)
tiled_raster_layer.to_geotiff_rdd(storage_method=gps.StorageMethod.TILED, tile_
→˓dimensions=(128, 128))

2.4.5 RDD Methods

As mentioned in the section on TiledRasterLayer’s repartition method, TiledRasterLayer has methods to
work with its internal RDD. This holds true for RasterLayer as well.

The following is a list of RDD with examples that are supported by both classes.

2.4. Working With Layers 33

GeoPySpark Documentation, Release 0.4.1

Cache

raster_layer.cache()

Persist

If no level is given, then MEMORY_ONLY will be used
tiled_raster_layer.persist()

Unpersist

tiled_raster_layer.unpersist()

getNumberOfPartitions

raster_layer.getNumPartitions()

Count

raster_layer.count()

isEmpty

raster_layer.isEmpty()

2.5 Catalog

The catalog module allows for users to retrieve information, query, and write to/from GeoTrellis layers.

Before begining, all examples in this guide need the following boilerplate code:

curl -o /tmp/cropped.tif https://s3.amazonaws.com/geopyspark-test/example-files/
→˓cropped.tif

import datetime
import geopyspark as gps
import numpy as np

from pyspark import SparkContext
from shapely.geometry import MultiPolygon, box

conf = gps.geopyspark_conf(master="local[*]", appName="layers")
pysc = SparkContext(conf=conf)

Setting up the Spatial Data to be used in this example

(continues on next page)

34 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

(continued from previous page)

spatial_raster_layer = gps.geotiff.get(layer_type=gps.LayerType.SPATIAL, uri="/tmp/
→˓cropped.tif")
spatial_tiled_layer = spatial_raster_layer.tile_to_layout(layout=gps.GlobalLayout(),
→˓target_crs=3857)

Setting up the Spatial-Temporal Data to be used in this example

def make_raster(x, y, v, cols=4, rows=4, crs=4326):
cells = np.zeros((1, rows, cols), dtype='float32')
cells.fill(v)
extent of a single cell is 1
extent = gps.TemporalProjectedExtent(extent = gps.Extent(x, y, x + cols, y +

→˓rows),
epsg=crs,
instant=datetime.datetime.now())

return (extent, gps.Tile.from_numpy_array(cells))

layer = [
make_raster(0, 0, v=1),
make_raster(3, 2, v=2),
make_raster(6, 0, v=3)

]

rdd = pysc.parallelize(layer)
space_time_raster_layer = gps.RasterLayer.from_numpy_rdd(gps.LayerType.SPACETIME, rdd)
space_time_tiled_layer = space_time_raster_layer.tile_to_layout(layout=gps.
→˓GlobalLayout(tile_size=5))
space_time_pyramid = space_time_tiled_layer.pyramid()

2.5.1 What is a Catalog?

A catalog is a directory where saved layers and their attributes are organized and stored in a certain manner. Within a
catalog, there can exist multiple layers from different data sets. Each of these layers, in turn, are their own directories
which contain two folders: one where the data is stored and the other for the metadata. The data for each layer is
broken up into zoom levels and each level has its own folder within the data folder of the layer. As for the metadata, it
is also broken up by zoom level and is stored as json files within the metadata folder.

Here’s an example directory structure of a catalog:

layer_catalog/
layer_a/
metadata_for_layer_a/

metadata_layer_a_zoom_0.json
....

data_for_layer_a/
0/

data
...

1/
data
...

...
layer_b/

(continues on next page)

2.5. Catalog 35

GeoPySpark Documentation, Release 0.4.1

(continued from previous page)

...

2.5.2 Accessing Data

GeoPySpark supports a number of different backends to save and read information from. These are the currently
supported backends:

• LocalFileSystem

• HDFS

• S3

• Cassandra

• HBase

• Accumulo

Each of these needs to be accessed via the URI for the given system. Here are example URIs for each:

• Local Filesystem: file://my_folder/my_catalog/

• HDFS: hdfs://my_folder/my_catalog/

• S3: s3://my_bucket/my_catalog/

• Cassandra: cassandra://[user:password@]zookeeper[:port][/keyspace][?attributes=table1[&layers=table2]]

• HBase: hbase://zookeeper[:port][?master=host][?attributes=table1[&layers=table2]]

• Accumulo: accumulo://[user[:password]@]zookeeper/instance-name[?attributes=table1[&layers=table2]]

It is important to note that neither HBase nor Accumulo have native support for URIs. Thus, GeoPySpark uses its own
pattern for these two systems.

A Note on Formatting Tiles

A small, but important, note needs to be made about how tiles that are saved and/or read in are formatted in GeoPyS-
park. All tiles will be treated as a MultibandTile. Regardless if they were one to begin with. This was a design
choice that was made to simplify both the backend and the API of GeoPySpark.

2.5.3 Saving Data to a Backend

The write() function will save a given TiledRasterLayer to a specified backend. If the catalog does not exist
when calling this function, then it will be created along with the saved layer.

Note: It is not possible to save a layer to a catalog if the layer name and zoom already exist. If you wish to overwrite
an existing, saved layer then it must be deleted before writing the new one.

Note: Saving a TiledRasterLayer that does not have a zoom_level will save the layer to a zoom of 0. Thus,
when it is read back out from the catalog, the resulting TiledRasterLayer will have a zoom_level of 0.

36 Chapter 2. Contact and Support

file://my_folder/my_catalog/

GeoPySpark Documentation, Release 0.4.1

Saving a Spatial Layer

Saving a spatial layer is a straight forward task. All that needs to be supplied is a URI, the name of the layer, and the
layer to be saved.

The zoom level which will be saved
spatial_tiled_layer.zoom_level

This will create a catalog called, "spatial-catalog" in the /tmp directory.
Within it, a layer named, "spatial-layer" will be saved.
gps.write(uri='file:///tmp/spatial-catalog', layer_name='spatial-layer', tiled_raster_
→˓layer=spatial_tiled_layer)

Saving a Spatial Temporal Layer

When saving a spatial-temporal layer, one needs to consider how the records within the catalog will be spaced; which
in turn, determines the resolution of index. The TimeUnit enum class contains all available units of time that can be
used to space apart data in the catalog.

The zoom level which will be saved
space_time_tiled_layer.zoom_level

This will create a catalog called, "spacetime-catalog" in the /tmp directory.
Within it, a layer named, "spacetime-layer" will be saved and each indice will be
→˓spaced apart by SECONDS
gps.write(uri='file:///tmp/spacetime-catalog',

layer_name='spacetime-layer',
tiled_raster_layer=space_time_tiled_layer,
time_unit=gps.TimeUnit.SECONDS)

Saving a Pyramid

For those that are unfamiliar with the Pyramid class, please see the Pyramid section of the visualization guide.
Otherwise, please continue on.

As of right now, there is no way to directly save a Pyramid. However, because a Pyramid is just a collection of
TiledRasterLayers of different zooms, it is possible to iterate through the layers of the Pyramid and save one
individually.

for zoom, layer in space_time_pyramid.levels.items():
Because we've already written a layer of the same name to the same catalog with

→˓a zoom level of 7,
we will skip writing the level 7 layer.
if zoom != 7:

gps.write(uri='file:///tmp/spacetime-catalog',
layer_name='spacetime-layer',
tiled_raster_layer=layer,
time_unit=gps.TimeUnit.SECONDS)

2.5.4 Reading Metadata From a Saved Layer

It is possible to retrieve the Metadata for a layer without reading in the whole layer. This is done using the
read_layer_metadata() function. There is no difference between spatial and spatial-temporal layers when

2.5. Catalog 37

GeoPySpark Documentation, Release 0.4.1

using this function.

Metadata from the TiledRasterLayer
spatial_tiled_layer.layer_metadata

Reads the Metadata from the spatial-layer of the spatial-catalog for zoom level 11
gps.read_layer_metadata(uri="file:///tmp/spatial-catalog",

layer_name="spatial-layer",
layer_zoom=11)

2.5.5 Reading a Tile From a Saved Layer

One can read a single tile that has been saved to a layer using the read_value() function. This will either return a
Tile or None depending on whether or not the specified tile exists.

Reading a Tile From a Saved, Spatial Layer

The Tile being read will be the smallest key of the layer
min_key = spatial_tiled_layer.layer_metadata.bounds.minKey

gps.read_value(uri="file:///tmp/spatial-catalog",
layer_name="spatial-layer",
layer_zoom=11,
col=min_key.col,
row=min_key.row)

Reading a Tile From a Saved, Spatial-Temporal Layer

The Tile being read will be the largest key of the layer
max_key = space_time_tiled_layer.layer_metadata.bounds.maxKey

gps.read_value(uri="file:///tmp/spacetime-catalog",
layer_name="spacetime-layer",
layer_zoom=7,
col=max_key.col,
row=max_key.row,
zdt=max_key.instant)

2.5.6 Reading a Layer

There are two ways one can read a layer in GeoPySpark: reading the entire layer or just portions of it. The former will
be the goal discussed in this section. While all of the layer will be read, the function for doing so is called, query().
There is no difference between spatial and spatial-temporal layers when using this function.

Note: What distinguishes between a full and partial read is the parameters given to query. If no filters were given,
then the whole layer is read.

Returns the entire layer that was at zoom level 11.
gps.query(uri="file:///tmp/spatial-catalog",

layer_name="spatial-layer",
layer_zoom=11)

38 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

2.5.7 Querying a Layer

When only a certain section of the layer is of interest, one can retrieve these areas of the layer through the query
method. The resulting TiledRasterLayer will contain all of the Tiles that the queried intersects, not just the
area itself.

Depending on the type of data being queried, there are a couple of ways to filter what will be returned.

Querying a Spatial Layer

One can query an area of a spatial layer that covers the region of interest by providing a geometry that represents this
region. This area can be represented as: shapely.geometry (specifically Polygons and MultiPolygons),
the wkb representation of the geometry, or an Extent.

Note: It is important that the given geometry is in the same projection as the queried layer. Otherwise, either the wrong
area will be returned or an empty layer will be returned.

When the Queried Geometry is in the Same Projection as the Layer

By default, the query function assumes that the geometry and layer given are in the same projection.

layer_extent = spatial_tiled_layer.layer_metadata.extent

Creates a Polygon from the cropped Extent of the Layer
poly = box(layer_extent.xmin+100, layer_extent.ymin+100, layer_extent.xmax-100, layer_
→˓extent.ymax-100)

Returns the region of the layer that was intersected by the Polygon at zoom level
→˓11.
gps.query(uri="file:///tmp/spatial-catalog",

layer_name="spatial-layer",
layer_zoom=11,
query_geom=poly)

When the Queried Geometry is in a Different Projection than the Layer

As stated above, it is important that both the geometry and layer are in the same projection. If the two are in different
CRSs, then this can be resolved by setting the proj_query parameter to whatever projection the geometry is in.

The queried Extent is in a different projection than the base layer
metadata = spatial_tiled_layer.tile_to_layout(layout=gps.GlobalLayout(), target_
→˓crs=4326).layer_metadata
metadata.layout_definition.extent, spatial_tiled_layer.layer_metadata.layout_
→˓definition.extent

Queries the area of the Extent and returns any intersections
querried_spatial_layer = gps.query(uri="file:///tmp/spatial-catalog",

layer_name="spatial-layer",
layer_zoom=11,
query_geom=metadata.layout_definition.extent.to_

→˓polygon,
query_proj="EPSG:4326")

(continues on next page)

2.5. Catalog 39

GeoPySpark Documentation, Release 0.4.1

(continued from previous page)

Because we queried the whole Extent of the layer, we should have gotten back the
→˓whole thing.
querried_extent = querried_spatial_layer.layer_metadata.layout_definition.extent
base_extent = spatial_tiled_layer.layer_metadata.layout_definition.extent

querried_extent == base_extent

Querying a Spatial-Temporal Layer

In addition to being able to query a geometry, spatial-temporal data can also be filtered by time as well. These times
are given as datetime.datetime instances.

Querying by Time

min_key = space_time_tiled_layer.layer_metadata.bounds.minKey

Returns a TiledRasterLayer whose keys intersect the given time interval.
In this case, the entire layer will be read.
gps.query(uri="file:///tmp/spacetime-catalog",

layer_name="spacetime-layer",
layer_zoom=7,
time_intervals=[min_key.instant, max_key.instant])

It's possible to query a single time interval. By doing so, only Tiles that contain
→˓the time given will be
returned.
gps.query(uri="file:///tmp/spacetime-catalog",

layer_name="spacetime-layer",
layer_zoom=7,
time_intervals=[min_key.instant])

Querying by Space and Time

In addition to Polygons, one can also query using MultiPolygons.
poly_1 = box(140.0, 60.0, 150.0, 65.0)
poly_2 = box(160.0, 70.0, 179.0, 89.0)
multi_poly = MultiPolygon(poly_1, poly_2)

Returns a TiledRasterLayer that contains the tiles which intersect the given
→˓polygons and are within the
specified time interval.
gps.query(uri="file:///tmp/spacetime-catalog",

layer_name="spacetime-layer",
layer_zoom=7,
query_geom=multi_poly,
time_intervals=[min_key.instant, max_key.instant])

40 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Non-Intersecting Queries

In the event that neither the query_geom nor time_intervals intersects the layer, then an empty
TiledRasterLayer will be returned.

A non-intersecting geometry that we will use to query our layer.
bad_area = box(-100, -100, 0, 0)

This will return an empty TiledRasterLayer
empty_layer = gps.query(uri="file:///tmp/spatial-catalog",

layer_name="spatial-layer",
layer_zoom=11,
query_geom=bad_area)

empty_layer.isEmpty()

2.5.8 AttributeStore

When writing a layer, GeoPySpark uses an AttributeStore to write layer metadata required to read and query
the layer later. This class can be used outside of catalog write and query functions to inspect available layers and
store additional, user defined, attributes.

Creating AttributeStore

AttributeStore can be created from the same URI that is given to write and query functions.

store = gps.AttributeStore(uri='file:///tmp/spatial-catalog')

Check if layer exists
store.contains('spatial-layer', 11)

List layers stored in the catalog, giving list of AttributeStore.Attributes
attributes_list = store.layers

Ask for layer attributes by name
attributes = store.layer('spatial-layer', 11)

Read layer metadata
attributes.layer_metadata()

User Defined Attributes

Internally AttributeStore is a key-value store where key is a tuple of layer name and zoom and values are
encoded as JSON. The layer metadata is stored under attribute named metadata. Care should be taken to not
overwrite this attribute.

Reading layer metadata as underlying JSON value
attributes.read("metadata")

{'header': {'format': 'file',
'keyClass': 'geotrellis.spark.SpatialKey',
'path': 'spatial-layer/11',
'valueClass': 'geotrellis.raster.MultibandTile'},

(continues on next page)

2.5. Catalog 41

GeoPySpark Documentation, Release 0.4.1

(continued from previous page)

'keyIndex': {'properties': {'keyBounds': {'maxKey': {'col': 1485, 'row': 996},
→˓'minKey': {'col': 1479, 'row': 984}}},
'type': 'zorder'},

'metadata': {'bounds': {'maxKey': {'col': 1485, 'row': 996},
'minKey': {'col': 1479, 'row': 984}},
'cellType': 'int16',
'crs': '+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0

→˓+k=1.0 +units=m +nadgrids=@null +wktext +no_defs ',
'extent': {'xmax': 9024345.159093022,
'xmin': 8905559.263461886,
'ymax': 781182.2141882492,
'ymin': 542452.4856863784},
'layoutDefinition': {'extent': {'xmax': 20037508.342789244,
'xmin': -20037508.342789244,
'ymax': 20037508.342789244,
'ymin': -20037508.342789244},

'tileLayout': {'layoutCols': 2048, 'layoutRows': 2048, 'tileCols': 256, 'tileRows
→˓': 256}}},
'schema': {...}

}

Otherwise you are free to store any additional attribute that is associated with the layer. Attributes provides
write and read functions that accept and provide a dictionary.

attributes.write("notes", {'a': 3, 'b': 5})
notes_dict = attributes.read("notes")

A common use case for this is to store the layer histogram when writing a layer so it may be used for rendering later.

Calculate the histogram
hist = spatial_tiled_layer.get_histogram()

GeoPySpark classes have to_dict as a convention when appropriate
hist_dict = hist.to_dict()

Writing a dictionary that gets encoded as JSON
attributes.write("histogram", hist_dict)

Reverse the process
hist_read_dict = attributes.read("histogram")

GeoPySpark classes have from_dict static method as a convention
hist_read = gps.Histogram.from_dict(hist_read_dict)

Use the histogram after round trip
hist.min_max()

AttributeStore Caching

An instance of AttributeStore keeps an in memory cache of attributes recently accessed. This is done because
a common access pattern to check layer existence, read the layer and decode the layer will produce repeated requests
for layer metadata. Depending on the backend used this may add considerable overhead and expense.

When writing a workflow that places heavy demand on AttributeStore reading it is worth while keeping track
of a class instance and reusing it

42 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Retrieve already created instance if its been asked for before
store = gps.AttributeStore.cached(uri='file:///tmp/spatial-catalog-2')

Catalog functions have optional store parameter that allows its reuse
gps.write(uri='file:///tmp/spatial-catalog-2',

layer_name='spatial-layer',
tiled_raster_layer=spatial_tiled_layer,
store=store)

2.6 Map Algebra

Given a set of raster layers, it may be desirable to combine and filter the content of those layers. This is the function of
map algebra. Two classes of map algebra operations are provided by GeoPySpark: local and focal operations. Local
operations individually consider the pixels or cells of one or more rasters, applying a function to the corresponding
cell values. For example, adding two rasters’ pixel values to form a new layer is a local operation.

Focal operations consider a region around each pixel of an input raster and apply an operation to each region. The
result of that operation is stored in the corresponding pixel of the output raster. For example, one might weight a 5x5
region centered at a pixel according to a 2d Gaussian to effect a blurring of the input raster. One might consider this
roughly equivalent to a 2d convolution operation.

Note: Map algebra operations work only on TiledRasterLayers, and if a local operation requires multiple inputs,
those inputs must have the same layout and projection.

Before begining, all examples in this guide need the following boilerplate code:

import geopyspark as gps
import numpy as np

from pyspark import SparkContext
from shapely.geometry import Point, MultiPolygon, LineString, box

conf = gps.geopyspark_conf(master="local[*]", appName="map-algebra")
pysc = SparkContext(conf=conf)

Setting up the data

cells = np.array([[[3, 4, 1, 1, 1],
[7, 4, 0, 1, 0],
[3, 3, 7, 7, 1],
[0, 7, 2, 0, 0],
[6, 6, 6, 5, 5]]], dtype='int32')

extent = gps.ProjectedExtent(extent = gps.Extent(0, 0, 5, 5), epsg=4326)

layer = [(extent, gps.Tile.from_numpy_array(numpy_array=cells))]

rdd = pysc.parallelize(layer)
raster_layer = gps.RasterLayer.from_numpy_rdd(gps.LayerType.SPATIAL, rdd)
tiled_layer = raster_layer.tile_to_layout(layout=gps.LocalLayout(tile_size=5))

2.6. Map Algebra 43

GeoPySpark Documentation, Release 0.4.1

2.6.1 Local Operations

Local operations on TiledRasterLayers can use ints, floats, or other TiledRasterLayers. +, -, *, /,
**, and abs are all of the local operations that currently supported.

(tiled_layer + 1)

(2 - (tiled_layer * 3))

((tiled_layer + tiled_layer) / (tiled_layer + 1))

abs(tiled_layer)

2 ** tiled_layer

A Pyramid can also be used in local operations. The types that can be used in local operations with Pyramids are:
ints, floats, TiledRasterLayers, and other Pyramids.

Note: Like with TiledRasterLayer, performing calculations on multiple Pyramids or TiledRasterLayers
means they must all have the same layout and projection.

Creating out Pyramid
pyramid = tiled_layer.pyramid()

pyramid + 1

(pyramid - tiled_layer) * 2

2.6.2 Focal Operations

Focal operations are performed in GeoPySpark by executing a given operation on a neighborhood throughout each tile
in the layer. One can select a neighborhood to use from the Neighborhood enum class. Likewise, an operation can
be choosen from the enum class, Operation.

This creates an instance of Square with an extent of 1. This means that
each operation will be performed on a 3x3
neighborhood.

'''
A square neighborhood with an extent of 1.
o = source cell
x = cells that fall within the neighbhorhood

x x x
x o x
x x x
'''

square = gps.Square(extent=1)

Mean

tiled_layer.focal(operation=gps.Operation.MEAN, neighborhood=square)

44 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Median

tiled_layer.focal(operation=gps.Operation.MEDIAN, neighborhood=square)

Mode

tiled_layer.focal(operation=gps.Operation.MODE, neighborhood=square)

Sum

tiled_layer.focal(operation=gps.Operation.SUM, neighborhood=square)

Standard Deviation

tiled_layer.focal(operation=gps.Operation.STANDARD_DEVIATION, neighborhood=square)

Min

tiled_layer.focal(operation=gps.Operation.MIN, neighborhood=square)

Max

tiled_layer.focal(operation=gps.Operation.MAX, neighborhood=square)

Slope

tiled_layer.focal(operation=gps.Operation.SLOPE, neighborhood=square)

Aspect

tiled_layer.focal(operation=gps.Operation.ASPECT, neighborhood=square)

2.6.3 Miscellaneous Raster Operations

There are other means to extract information from rasters and to create rasters that need to be presented. These are
polygonal summaries, cost distance, and rasterization.

2.6. Map Algebra 45

GeoPySpark Documentation, Release 0.4.1

Polygonal Summary Methods

In addition to local and focal operations, polygonal summaries can also be performed on TiledRasterLayers.
These are operations that are executed in the areas that intersect a given geometry and the layer.

Note: It is important the given geometry is in the same projection as the layer. If they are not, then either incorrect
and/or only partial results will be returned.

tiled_layer.layer_metadata

Polygonal Min

poly_min = box(0.0, 0.0, 1.0, 1.0)
tiled_layer.polygonal_min(geometry=poly_min, data_type=int)

Polygonal Max

poly_max = box(1.0, 0.0, 2.0, 2.5)
tiled_layer.polygonal_min(geometry=poly_max, data_type=int)

Polygonal Sum

poly_sum = box(0.0, 0.0, 1.0, 1.0)
tiled_layer.polygonal_min(geometry=poly_sum, data_type=int)

Polygonal Mean

poly_max = box(1.0, 0.0, 2.0, 2.0)
tiled_layer.polygonal_min(geometry=poly_max, data_type=int)

Cost Distance

cost_distance() is an iterative method for approximating the weighted distance from a raster cell to a given
geometry. The cost_distance function takes in a geometry and a “friction layer” which essentially describes how
difficult it is to traverse each raster cell. Cells that fall within the geometry have a final cost of zero, while friction
cells that contain noData values will correspond to noData values in the final result. All other cells have a value that
describes the minimum cost of traversing from that cell to the geometry. If the friction layer is uniform, this function
approximates the Euclidean distance, modulo some scalar value.

cost_distance_cells = np.array([[[1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 0.0]]])

tile = gps.Tile.from_numpy_array(numpy_array=cost_distance_cells, no_data_value=-1.0)
cost_distance_extent = gps.ProjectedExtent(extent=gps.Extent(xmin=0.0, ymin=0.0,
→˓xmax=5.0, ymax=5.0), epsg=4326)

(continues on next page)

46 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

(continued from previous page)

cost_distance_layer = [(cost_distance_extent, tile)]

cost_distance_rdd = pysc.parallelize(cost_distance_layer)
cost_distance_raster_layer = gps.RasterLayer.from_numpy_rdd(gps.LayerType.SPATIAL,
→˓cost_distance_rdd)
cost_distance_tiled_layer = cost_distance_raster_layer.tile_to_layout(layout=gps.
→˓LocalLayout(tile_size=5))

gps.cost_distance(friction_layer=cost_distance_tiled_layer, geometries=[Point(0.0, 5.
→˓0)], max_distance=144000.0)

Rasterization

It may be desirable to convert vector data into a raster layer. For this, we provide the rasterize() function, which
determines the set of pixel values covered by each vector element, and assigns a supplied value to that set of pixels
in a target raster. If, for example, one had a set of polygons representing counties in the US, and a value for, say, the
median income within each county, a raster could be made representing these data.

GeoPySpark’s rasterize function can take a [shapely.geometry], (shapely.geometry), or a
PythonRDD[shapely.geometry]. These geometries will be converted to rasters, then tiled to a given layout,
and then be returned as a TiledRasterLayer which contains these tiled values.

Rasterize MultiPolygons

raster_poly_1 = box(0.0, 0.0, 5.0, 10.0)
raster_poly_2 = box(3.0, 6.0, 15.0, 20.0)
raster_poly_3 = box(13.5, 17.0, 30.0, 20.0)

raster_multi_poly = MultiPolygon([raster_poly_1, raster_poly_2, raster_poly_3])

Creates a TiledRasterLayer with a CRS of EPSG:4326 at zoom level 5.
gps.rasterize(geoms=[raster_multi_poly], crs=4326, zoom=5, fill_value=1)

Rasterize a PythonRDD of Polygons

poly_rdd = pysc.parallelize([raster_poly_1, raster_poly_2, raster_poly_3])

Creates a TiledRasterLayer with a CRS of EPSG:3857 at zoom level 5.
gps.rasterize(geoms=poly_rdd, crs=3857, zoom=3, fill_value=10)

Rasterize LineStrings

line_1 = LineString(((0.0, 0.0), (0.0, 5.0)))
line_2 = LineString(((7.0, 5.0), (9.0, 12.0), (12.5, 15.0)))
line_3 = LineString(((12.0, 13.0), (14.5, 20.0)))

Creates a TiledRasterLayer whose cells have a data type of int16.
gps.rasterize(geoms=[line_1, line_2, line_3], crs=4326, zoom=3, fill_value=2, cell_
→˓type=gps.CellType.INT16)

2.6. Map Algebra 47

GeoPySpark Documentation, Release 0.4.1

Rasterize Polygons and LineStrings

Creates a TiledRasterLayer from both LineStrings and MultiPolygons
gps.rasterize(geoms=[line_1, line_2, line_3, raster_multi_poly], crs=4326, zoom=5,
→˓fill_value=2)

2.7 Visualizing Data in GeoPySpark

Data is visualized in GeoPySpark by running a server which allows it to be viewed in an interactive way. Before
putting the data on the server, however, it must first be formatted and colored. This guide seeks to go over the steps
needed to create a visualization server in GeoPySpark.

Before begining, all examples in this guide need the following boilerplate code:

curl -o /tmp/cropped.tif https://s3.amazonaws.com/geopyspark-test/example-files/
→˓cropped.tif

import geopyspark as gps
import matplotlib.pyplot as plt

from colortools import Color
from pyspark import SparkContext

%matplotlib inline

conf = gps.geopyspark_conf(master="local[*]", appName="visualization")
pysc = SparkContext(conf=conf)

raster_layer = gps.geotiff.get(layer_type=gps.LayerType.SPATIAL, uri="/tmp/cropped.tif
→˓")
tiled_layer = raster_layer.tile_to_layout(layout=gps.GlobalLayout(), target_crs=3857)

2.7.1 Pyramid

The Pyramid class represents a list of TiledRasterLayers that represent the same area where each layer is a
level within the pyramid at a specific zoom level. Thus, as one moves up the pyramid (starting a level 0), the image
will have its pixel resolution increased by a power of 2 for each level. It is this varying level of detail that allows
an interactive tile server to be created from a Pyramid. This class is needed in order to create visualizations of the
contents within its layers.

Creating a Pyramid

There are currently two different ways to create a Pyramid instance: Through the TiledRasterLayer.
pyramid method or by constructing it by passing in a [TiledRasterLayer] or {zoom_level:
TiledRasterLayer} to Pyramid.

Any TiledRasterLayer with a max_zoom can be pyramided. However, the resulting Pyramid may have lim-
ited functionality depending on the layout of the source TiledRasterLayer. In order to be used for visualization,
the Pyramid must have been created from TiledRasterLayer that was tiled using a GlobalLayout and
whose tiles have a spatial resolution of a power of 2.

48 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Via the pyramid Method

When using the Pyramid method, a Pyramid instance will be created with levels from 0 to
TiledRasterlayer.zoom_level. Thus, if a TiledRasterLayer has a zoom_level of 12 then the re-
sulting Pyramid will have 13 levels that each correspond to a zoom from 0 to 12.

pyramided = tiled_layer.pyramid()

Contrusting a Pyramid Manually

gps.Pyramid([tiled_layer.tile_to_layout(gps.GlobalLayout(zoom=x)) for x in range(0,
→˓13)])

gps.Pyramid({x: tiled_layer.tile_to_layout(gps.GlobalLayout(zoom=x)) for x in range(0,
→˓ 13)})

Computing the Histogram of a Pyramid

One can produce a Histogram instance representing the bottom most layer within a Pyramid via the
get_histogram() method.

hist = pyramided.get_histogram()
hist

RDD Methods

Pyramid contains methods for working with the RDDs contained within its TiledRasterLayers. A list of these
can be found here RDD Methods. When used, all internal RDDs will be operated on.

Map Algebra

While not as versatile as TiledRasterLayer in terms of map algebra operations, Pyramids are still able to
perform local operations between themselves, ints, and floats.

Note: Operations between two or more Pyramids will occur on a per Tile basis which depends on the tiles having
the same key. It is therefore possible to do an operation between two Pyramids and getting a result where nothing
has changed if neither of the Pyramids have matching keys.

pyramided + 1

(2 * (pyramided + 2)) / 3

When performing operations on two or more Pyramids, if the Pyamids involved have different number of levels,
then the resulting Pyramid will only have as many levels as the source Pyramid with the smallest level count.

small_pyramid = gps.Pyramid({x: tiled_layer.tile_to_layout(gps.GlobalLayout(zoom=x))
→˓for x in range(0, 5)})
result = pyramided + small_pyramid
result.levels

2.7. Visualizing Data in GeoPySpark 49

GeoPySpark Documentation, Release 0.4.1

2.7.2 ColorMap

The ColorMap class in GeoPySpark acts as a wrapper for the GeoTrellis ColorMap class. It is used to colorize the
data within a layer when it’s being visualized.

Constructing a Color Ramp

Before we can initialize ColorMap we must first create a list of colors (or a color ramp) to pass in. This can be
created either through a function in the color module or manually.

Using Matplotlib

The get_colors_from_matplotlib function creates a color ramp using the name of on an existing in color
ramp in Matplotlib and the number of colors.

Note: This function will not work if Matplotlib is not installed.

gps.get_colors_from_matplotlib(ramp_name="viridis")

gps.get_colors_from_matplotlib(ramp_name="hot", num_colors=150)

From ColorTools

The second helper function for constructing a color ramp is get_colors_from_colors. This uses the colortools
package to build the ramp from [Color] instances.

Note: This function will not work if colortools is not installed.

colors = [Color('green'), Color('red'), Color('blue')]
colors

colors_color_ramp = gps.get_colors_from_colors(colors=colors)
colors_color_ramp

Creating a ColorMap

ColorMap has many different ways of being constructed depending on the inputs it’s given.

From a Histogram

gps.ColorMap.from_histogram(histogram=hist, color_list=colors_color_ramp)

From a List of Colors

Creates a ColorMap instance that will have three colors for the values that are
→˓less than or equal to 0, 250, and
1000.
gps.ColorMap.from_colors(breaks=[0, 250, 1000], color_list=colors_color_ramp)

50 Chapter 2. Contact and Support

https://matplotlib.org
https://pypi.python.org/pypi/colortools/0.1.2

GeoPySpark Documentation, Release 0.4.1

For NLCD Data

If the layers you are working with contain data from NLCD, then it is possible to construct a ColorMap without first
making a color ramp and passing in a list of breaks.

gps.ColorMap.nlcd_colormap()

From a Break Map

If there aren’t many colors to work with in the layer, than it may be easier to construct a ColorMap using a
break_map, a dict that maps tile values to colors.

The three tile values are 1, 2, and 3 and they correspond to the colors 0x00000000,
→˓0x00000001, and 0x00000002
respectively.
break_map = {

1: 0x00000000,
2: 0x00000001,
3: 0x00000002

}

gps.ColorMap.from_break_map(break_map=break_map)

More General Build Method

As mentioned above, ColorMap has a more general classmethod called build() which takes a wide range of
types to construct a ColorMap. In the following example, build will be passed the same inputs used in the previous
examples.

build using a Histogram
gps.ColorMap.build(breaks=hist, colors=colors_color_ramp)

It is also possible to pass in the name of Matplotlib color ramp instead of
→˓constructing it yourself
gps.ColorMap.build(breaks=hist, colors="viridis")

build using Colors
gps.ColorMap.build(breaks=colors_color_ramp, colors=colors)

buld using breaks
gps.ColorMap.build(breaks=break_map)

Additional Coloring Options

In addition to supplying breaks and color values to ColorMap, there are other ways of changing the coloring strategy
of a layer.

The following additional parameters that can be changed:

• no_data_color: The color of the no_data_value of the Tiles. The default is 0x00000000

• fallback: The color to use when a Tile value has no color mapping. The default is 0x00000000

2.7. Visualizing Data in GeoPySpark 51

GeoPySpark Documentation, Release 0.4.1

• classification_strategy: How the colors should be assigned to the values based on the breaks. The
default is ClassificationStrategy.LESS_THAN_OR_EQUAL_TO.

2.8 TMS Servers

GeoPySpark is meant to work with geospatial data. The most natural way to interact with these data is to display them
on a map. In order to allow for this interactive visualization, we provide a means to create Tile Map Service (TMS)
servers directly from both GeoPySpark RDDs and tile catalogs. A TMS server may be viewed using a web-based tool
such as geojson.io or interacted with using the GeoNotebook Jupyter kernel.1

Note that the following examples rely on this common boilerplate code:

import geopyspark as gps
from pyspark import SparkContext

conf = gps.geopyspark_conf(appName="demo")
sc = SparkContext(conf=conf)

2.8.1 Basic Example

The most straightforward use case of the TMS server is to display a singleband layer with some custom color map.
This is accomplished easily:

cm = gps.ColorMap.nlcd_colormap()

layers = []

Reads in the first 3 levels of the layer
for zoom in range(0, 4):

layers.append(gps.query(uri="s3://azavea-datahub/catalog",
layer_name="nlcd-tms-epsg3857",
layer_zoom=zoom))

nlcd_pyramid = gps.Pyramid(layers)

tms = gps.TMS.build(source=nlcd_pyramid, display=cm)

Of course, other color maps can be used. See the documentation for ColorMap for more details.

TMS.build can display data from catalogs—which are represented as a string-string pair containing the URI of the
catalog root and the name of the layer—or from a Pyramid object. One may also specify a list of any combination
of these sources; more on multiple sources below.

Once a TMS server is constructed, we need to make the contents visible by binding the server. The bind() method
can take a host and/or a port, where the former is a string, and the latter is an integer. Providing neither will result
in a TMS server accessible from localhost on a random port. If the server should be accessible from the outside world,
a host value of "0.0.0.0" may be used.

A call to bind() is then followed by a call to url_pattern(), which provides a string that gives the template for
the tiles furnished by the TMS server. This template string may be copied directly into geojson.io, for example. When
the TMS server is no longer needed, its resources can be freed by a call to unbind().

1 Note that changes allowing for display of TMS-served tiles in GeoNotebook have not yet been accepted into the master branch of that
repository. In the meantime, find a TMS-enabled fork at http://github.com/geotrellis/geonotebook.

52 Chapter 2. Contact and Support

http://geojson.io
https://github.com/OpenGeoscience/geonotebook
http://geojson.io
http://github.com/geotrellis/geonotebook

GeoPySpark Documentation, Release 0.4.1

set up the TMS server to serve from 'localhost' on a random port
tms.bind()

tms.url_pattern

(browse the the TMS-served layer in some interface)

tms.unbind()

In the event that one is using GeoPySpark from within the GeoNotebook environment, bind should not be used, and
the following code should be used instead:

from geonotebook.wrappers import TMSRasterData
M.add_layer(TMSRasterData(tms), name="NLCD")

2.8.2 Custom Rendering Functions

For the cases when more than a simple color map needs to be applied, one may also specify a custom rendering
function.2 There are two methods for custom rendering depending on whether one is rendering a single layer or
compositing multiple layers. We address each in turn.

Rendering Single Layers

If one has special demands for display—including possible ad-hoc manipulation of layer data during the display
process—then one may write a Python function to convert some tile data into an image that may be served via the
TMS server.

The general approach is to develop a function taking a Tile that returns a byte array containing the resulting image,
encoded as PNG or JPG. The following example uses this rendering function approach to apply the same simple color
map as above.

from PIL import Image
import numpy as np

def hex_to_rgb(value):
"""Return (red, green, blue) for the color given as #rrggbb."""
value = value.lstrip('#')
lv = len(value)
return tuple(int(value[i:i + lv // 3], 16) for i in range(0, lv, lv // 3))

nlcd_color_map = { 0 : "#00000000",
11 : "#526095FF", # Open Water
12 : "#FFFFFFFF", # Perennial Ice/Snow
21 : "#D28170FF", # Low Intensity Residential
22 : "#EE0006FF", # High Intensity Residential
23 : "#990009FF", # Commercial/Industrial/Transportation
31 : "#BFB8B1FF", # Bare Rock/Sand/Clay
32 : "#969798FF", # Quarries/Strip Mines/Gravel Pits
33 : "#382959FF", # Transitional
41 : "#579D57FF", # Deciduous Forest
42 : "#2A6B3DFF", # Evergreen Forest
43 : "#A6BF7BFF", # Mixed Forest

(continues on next page)

2 If one is only applying a colormap to a singleband tile layer, a custom rendering function should not be used as it will be noticeably slower to
display.

2.8. TMS Servers 53

GeoPySpark Documentation, Release 0.4.1

(continued from previous page)

51 : "#BAA65CFF", # Shrubland
61 : "#45511FFF", # Orchards/Vineyards/Other
71 : "#D0CFAAFF", # Grasslands/Herbaceous
81 : "#CCC82FFF", # Pasture/Hay
82 : "#9D5D1DFF", # Row Crops
83 : "#CD9747FF", # Small Grains
84 : "#A7AB9FFF", # Fallow
85 : "#E68A2AFF", # Urban/Recreational Grasses
91 : "#B6D8F5FF", # Woody Wetlands
92 : "#B6D8F5FF" } # Emergent Herbaceous Wetlands

def rgba_functions(color_map):
m = {}
for key in color_map:

m[key] = hex_to_rgb(color_map[key])

def r(v):
if v in m:

return m[v][0]
else:

return 0

def g(v):
if v in m:

return m[v][1]
else:

return 0

def b(v):
if v in m:

return m[v][2]
else:

return 0

def a(v):
if v in m:

return m[v][3]
else:

return 0x00

return (np.vectorize(r), np.vectorize(g), np.vectorize(b), np.vectorize(a))

def render_nlcd(tile):
'''
Assumes that the tile is a multiband tile with a single band.
(meaning shape = (1, cols, rows))
'''
arr = tile.cells[0]
(r, g, b, a) = rgba_functions(nlcd_color_map)

rgba = np.dstack([r(arr), g(arr), b(arr), a(arr)]).astype('uint8')

img = Image.fromarray(rgba, mode='RGBA')

return img

(continues on next page)

54 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

(continued from previous page)

tms = gps.TMS.build(nlcd_pyramid, display=render_nlcd)

You will likely observe noticeably slower performance compared to the earlier example. This is because the contents of
each tile must be transferred from the JVM to the Python environment prior to rendering. If performance is important
to you, and a color mapping solution is available, please use that approach.

Compositing Multiple Layers

It is also possible to combine data from various sources at the time of display. Of course, one could use map algebra
to produce a composite layer, but if the input layers are large, this could potentially be a time-consuming operation.
The TMS server allows for a list of sources to be supplied; these may be any combination of Pyramid objects and
catalogs. We then may supply a function that takes a list of Tile instances and produces the bytes of an image as in
the single-layer case.

The following example masks the NLCD layer to areas above 1371 meters, using some of the helper functions from
the previous example.

from scipy.interpolate import interp2d

layers = []

for zoom in range(0, 4):
layers.append(gps.query(uri="s3://azavea-datahub/catalog",

layer_name="us-ned-tms-epsg3857",
layer_zoom=zoom))

ned_pyramid = gps.Pyramid(layers)

def comp(tiles):
elev256 = tiles[0].cells[0]
grid256 = range(256)
f = interp2d(grid256, grid256, elev256)
grid512 = np.arange(0, 256, 0.5)
elev = f(grid512, grid512)

land_use = tiles[1].cells[0]

arr = land_use
arr[elev < 1371] = 0

(r, g, b, a) = rgba_functions(nlcd_color_map)

rgba = np.dstack([r(arr), g(arr), b(arr), a(arr)]).astype('uint8')

img = Image.fromarray(rgba, mode='RGBA')

return img

tms = gps.TMS.build([ned_pyramid, nlcd_pyramid], display=comp)

This example shows the major pitfall likely to be encountered in this approach: tiles of different size must be somehow
combined. NLCD tiles are 512x512, while the National Elevation Data (NED) tiles are 256x256. In this example, the
NED data is (bilinearly) resampled using scipy’s interp2d function to the proper size.

2.8. TMS Servers 55

GeoPySpark Documentation, Release 0.4.1

Debugging Considerations

Be aware that if there are problems in the rendering or compositing functions, the TMS server will tend to produce
empty images, which can result in a silent failure of a layer to display, or odd exceptions in programs expecting mean-
ingful images, such as GeoNotebook. It is advisable to thoroughly test these rendering functions ahead of deployment,
as errors encountered in their use will be largely invisible.

2.9 Ingesting an Image

This example shows how to ingest a grayscale image and save the results locally. It is assumed that you have already
read through the documentation on GeoPySpark before beginning this tutorial.

2.9.1 Getting the Data

Before we can begin with the ingest, we must first download the data from S3. This curl command will download a
file from S3 and save it to your /tmp direcotry. The file being downloaded comes from the Shuttle Radar Topography
Mission (SRTM) dataset, and contains elevation data on the east coast of Sri Lanka.

A side note: Files can be retrieved directly from S3 using the methods shown in this tutorial. However, this could not
be done in this instance due to permission requirements needed to access the file.

curl -o /tmp/cropped.tif https://s3.amazonaws.com/geopyspark-test/example-files/
→˓cropped.tif

2.9.2 What is an Ingest?

Before continuing on, it would be best to briefly discuss what an ingest actually is. When data is acquired, it may
cover an arbitrary spatial extent in an arbitrary projection. This data needs to be regularized to some expected layout
and cut into tiles. After this step, we will possess a TiledRasterLayer that can be analyzed and saved for later
use. For more information on layers and the data they hold, see the layers guide.

2.9.3 The Code

With our file downloaded we can begin the ingest.

import geopyspark as gps

from pyspark import SparkContext

Setting Up the SparkContext

The first thing one needs to do when using GeoPySpark is to setup SparkContext. Because GeoPySpark is backed
by Spark, the pysc is needed to initialize our starting classes.

For those that are already familiar with Spark, you may already know there are multiple ways to create a
SparkContext. When working with GeoPySpark, it is advised to create this instance via SparkConf. There
are numerous settings for SparkConf, and some have to be set a certain way in order for GeoPySpark to work.
Thus, geopyspark_conf was created as way for a user to set the basic parameters without having to worry about
setting the other, required fields.

56 Chapter 2. Contact and Support

https://www2.jpl.nasa.gov/srtm/index.html
https://www2.jpl.nasa.gov/srtm/index.html
layers.ipynb

GeoPySpark Documentation, Release 0.4.1

conf = gps.geopyspark_conf(master="local[*]", appName="ingest-example")
pysc = SparkContext(conf=conf)

Reading in the Data

After the creation of pysc, we can now read in the data. For this example, we will be reading in a single GeoTiff that
contains spatial data. Hence, why we set the layer_type to LayerType.SPATIAL.

raster_layer = gps.geotiff.get(layer_type=gps.LayerType.SPATIAL, uri="file:///tmp/
→˓cropped.tif")

Tiling the Data

It is now time to format the data within the layer to our desired layout. The aptly named, tile_to_layout, method
will cut and arrange the rasters in the layer to the layout of our choosing. This results in us getting a new class instance
of TiledRasterLayer. For this example, we will be tiling to a GlobalLayout.

With our tiled data, we might like to make a tile server from it and show it in on a map at some point. Therefore, we
have to make sure that the tiles within the layer are in the right projection. We can do this by setting the target_crs
parameter.

tiled_raster_layer = raster_layer.tile_to_layout(gps.GlobalLayout(), target_crs=3857)
tiled_raster_layer

Pyramiding the Data

Now it’s time to pyramid! With our reprojected data, we will create an instance of Pyramid that contains 12
TiledRasterLayers. Each one having it’s own zoom_level from 11 to 0.

pyramided_layer = tiled_raster_layer.pyramid()
pyramided_layer.max_zoom

pyramided_layer.levels

Saving the Pyramid Locally

To save all of the TiledRasterLayers within pyramid_layer, we just have to loop through values of
pyramid_layer.level and write each layer locally.

for tiled_layer in pyramided_layer.levels.values():
gps.write(uri="file:///tmp/ingested-image", layer_name="ingested-image", tiled_

→˓raster_layer=tiled_layer)

2.10 Reading in Sentinel-2 Images

Sentinel-2 is an observation mission developed by the European Space Agency to monitor the surface of the Earth
official website. Sets of images are taken of the surface where each image corresponds to a specific wavelength.
These images can provide useful data for a wide variety of industries, however, the format they are stored in can prove

2.10. Reading in Sentinel-2 Images 57

http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2

GeoPySpark Documentation, Release 0.4.1

difficult to work with. This being JPEG 2000 (file extension .jp2), an image compression format for JPEGs that
allows for improved quality and compression ratio.

2.10.1 Why Use GeoPySpark

There are few libraries and/or applications that can work with jp2s and big data, which can make processing large
amounts of sentinel data difficult. However, by using GeoPySpark in conjunction with the tools available in Python,
we are able to read in and work with large sets of sentinel imagery.

2.10.2 Getting the Data

Before we can start this tutorial, we will need to get the sentinel images. All sentinel data can be found on Amazon’s
S3 service, and we will be downloading it straight from there.

We will download three different jp2s that represent the same area and time in different wavelengths: Aerosol detec-
tion (443 nm), Water vapor (945 nm), and Cirrus (1375 nm). These bands are chosen because they are all in the same
60m resolution. The tiles we will be working with cover the eastern coast of Corsica taken on January 4th, 2017.

For more information on the way the data is stored on S3, please see this link.

curl -o /tmp/B01.jp2 http://sentinel-s2-l1c.s3.amazonaws.com/tiles/32/T/NM/2017/1/4/0/
→˓B01.jp2
curl -o /tmp/B09.jp2 http://sentinel-s2-l1c.s3.amazonaws.com/tiles/32/T/NM/2017/1/4/0/
→˓B09.jp2
curl -o /tmp/B10.jp2 http://sentinel-s2-l1c.s3.amazonaws.com/tiles/32/T/NM/2017/1/4/0/
→˓B10.jp2

2.10.3 The Code

Now that we have the files, we can begin to read them into GeoPySpark.

import rasterio
import geopyspark as gps
import numpy as np

from pyspark import SparkContext

conf = gps.geopyspark_conf(master="local[*]", appName="sentinel-ingest-example")
pysc = SparkContext(conf=conf)

2.10.4 Reading in the JPEG 2000’s

rasterio, being backed by GDAL, allows us to read in the jp2s. Once they are read in, we will then combine the
three seperate numpy arrays into one. This combined array represents a single, multiband raster.

jp2s = ["/tmp/B01.jp2", "/tmp/B09.jp2", "/tmp/B10.jp2"]
arrs = []

for jp2 in jp2s:
with rasterio.open(jp2) as f:

arrs.append(f.read(1))

(continues on next page)

58 Chapter 2. Contact and Support

http://sentinel-pds.s3-website.eu-central-1.amazonaws.com/

GeoPySpark Documentation, Release 0.4.1

(continued from previous page)

data = np.array(arrs, dtype=arrs[0].dtype)
data

2.10.5 Creating the RDD

With our raster data in hand, we can how begin the creation of a Python RDD. Please see the core concepts guide for
more information on what the following instances represent.

Create an Extent instance from rasterio's bounds
extent = gps.Extent(*f.bounds)

The EPSG code can also be obtained from the information read in via rasterio
projected_extent = gps.ProjectedExtent(extent=extent, epsg=int(f.crs.to_dict()['init
→˓'][5:]))
projected_extent

You may have noticed in the above code that we did something weird to get the CRS from the rasterio file. This had to
be done because the way rasterio formats the projection of the read in rasters is not compatible with how GeoPySpark
expects the CRS to be in. Thus, we had to do a bit of extra work to get it into the correct state

Projection information from the rasterio file
f.crs.to_dict()

The projection information formatted to work with GeoPySpark
int(f.crs.to_dict()['init'][5:])

We can create a Tile instance from our multiband, raster array and the nodata value
→˓from rasterio
tile = gps.Tile.from_numpy_array(numpy_array=data, no_data_value=f.nodata)
tile

Now that we have our ProjectedExtent and Tile, we can create our RDD from them
rdd = pysc.parallelize([(projected_extent, tile)])
rdd

2.10.6 Creating the Layer

From the RDD, we can now create a RasterLayer using the from_numpy_rdd method.

While there is a time component to the data, this was ignored for this tutorial and
→˓instead the focus is just
on the spatial information. Thus, we have a LayerType of SPATIAL.
raster_layer = gps.RasterLayer.from_numpy_rdd(layer_type=gps.LayerType.SPATIAL, numpy_
→˓rdd=rdd)
raster_layer

2.10.7 Where to Go From Here

By creating a RasterLayer, we can now work with and analyze the data within it. If you wish to know more
about these operations, please see the following guides: Layers Guide, Map Algebra Guide Visulation Guide, and the
Catalog Guide.

2.10. Reading in Sentinel-2 Images 59

core-concepts.ipynb
../guides/layers.html
../guides/map-algebra.html
../guides/visualization.html
../guides/catalog.html

GeoPySpark Documentation, Release 0.4.1

2.11 Reading and Rasterizing Open Street Map Data

This tutorial shows how to read in Open Street Map (OSM) data, and then rasterize it using GeoPySpark.

Note: This guide is aimed at users who are already familiar with GeoPySpark.

2.11.1 Getting the Data

To start, let’s first grab an orc file, which a special file type that is optimized for Hadoop operations. The following
command will use curl to download the file from S3 and move it to the /tmp directory.

curl -o /tmp/boyertown.orc https://s3.amazonaws.com/geopyspark-test/example-files/
→˓boyertown.orc

A side note: Files can be retrieved directly from S3. However, this could not be done in this instance due to permission
requirements needed to access the file.

2.11.2 Reading in the Data

Now that we have our data, we can now read it in and begin to work with.

import geopyspark as gps
from pyspark import SparkContext

conf = gps.geopyspark_conf(appName="osm-rasterize-example", master="local[*]")
pysc = SparkContext(conf=conf)

features = gps.osm_reader.from_orc("/tmp/boyertown.orc")

The above code sets up a SparkContext and then reads in the boyertown.orc file as features, which is an
instance of FeaturesCollection.

When OSM data is read into GeoPySpark, each OSM Element is turned into single or multiple different geometries.
With each of these geometries retaining the metadata from the derived OSM Element. These geometry metadata pairs
are referred to as a Feature. These features are grouped together by the type of geometry they contain. When
accessing features from a FeaturesCollection, it is done by geometry.

There are four different types of geometries in the FeaturesCollection:

• Point

• Line

• Polygon

• MultiPolygon

Selecting the Features We Want

For this example, we’re interested in rasterizing the Lines and Polygons from the OSM data, so we will select those
Features from the FeaturesCollection that contain them. The following code will create a Python RDD of
Features that contains all Line geometries (lines), and a Python RDD that contains all Polygon geometries
(polygons).

lines = features.get_line_features_rdd()
polygons = features.get_polygon_features_rdd()

60 Chapter 2. Contact and Support

https://orc.apache.org/

GeoPySpark Documentation, Release 0.4.1

Looking at the Tags of the Features

When we rasterize the Polygon Features, we’d like for schools to have a different value than all of the other
Polygons. However, we are unsure if any schools were contained within the original data, and we’d like to see if
any are. One method we could use to determine if there are schools is to look at the tags of the Polygon Features.
The following code will show all of the unique tags for all of the Polygons in the collection.

features.get_polygon_tags()

Which has the following output:

{'NHD:ComID': '25964412',
'NHD:Elevation': '0.00000000000',
'NHD:FCode': '39004',
'NHD:FDate': '2001/08/16',
'NHD:FTYPE': 'LakePond',
'NHD:Permanent_': '25964412',
'NHD:ReachCode': '02040203004486',
'NHD:Resolution': 'High',
'addr:city': 'Gilbertsville',
'addr:housenumber': '1100',
'addr:postcode': '19525',
'addr:state': 'PA',
'addr:street': 'E Philadelphia Avenue',
'amenity': 'school',
'area': 'yes',
'building': 'yes',
'leisure': 'pitch',
'name': 'Boyertown Area Junior High School-West Center',
'natural': 'water',
'railway': 'platform',
'smoking': 'outside',
'source': 'Yahoo',
'sport': 'baseball',
'tourism': 'museum',
'wikidata': 'Q8069423',
'wikipedia': "en:Zern's Farmer's Market"}

So it appears that there are schools in this dataset, and that we can continue on.

2.11.3 Assigning Values to Geometries

Now that we have our Features, it’s time to assign them values. The reason we need to do so is because when
a vector becomes a raster, its cells need to have some kind of value. When rasterizing Features, each geometry
contained within it will be given a single value, and all cells that intersect that shape will have that value. In addition
to value of the actual cells, there’s another property that we will want to set for each Feature, Z-Index.

The Z-Index of a Feature determines what value a cell will be if more than one geometry intersects it. With a
higher Z-Index taking priority over a lower one. This is important as there may be cases where multiple geometries
are present at a single cell, but that cell can only contain one value.

For this example, we are going to want all Polygons to have a higher Z-Index than the Lines. In addition, since
we’re interested in schools, Polygons that are labeled as schools will have a greater Z-Index than other Polygons.

2.11. Reading and Rasterizing Open Street Map Data 61

GeoPySpark Documentation, Release 0.4.1

mapped_lines = lines.map(lambda feature: gps.Feature(feautre.geometry, gps.
→˓CellValue(value=1, zindex=1)))

def assign_polygon_feature(feature):
tags = feature.properties.tags.values()

if 'school' in tags.values():
return gps.Feature(feature.geometry, gps.CellValue(value=3, zindex=3))

else:
return gps.Feature(feature.geometry, gps.CellValue(value=2, zindex=2))

mapped_polygons = polygons.map(assign_polygon_feature)

We create the mapped_lines variable that contains an RDD of Features, where each Feature has a
CellValue with a value and zindex of 1. The assign_polygon_feature function is then created which
will test to see if a Polygon is a school or not. If it is, then the resulting Feature will have a CellValue with a
value and zindex of 3. Otherwise, those two values will be 2.

2.11.4 Rasterizing the Features

Now that the Features have been given CellValues, it is now time to rasterize them.

unioned_features = pysc.union((mapped_lines, mapped_polygons))

rasterized_layer = gps.rasterize_features(features=unioned_features, crs=4326,
→˓zoom=12)

The rasterize_features function requires a single RDD of Features. Therefore, we union together
mapped_lines and mapped_polygons which gives us unioned_features. Along with passing in our
RDD, we must also set the crs and zoom of the resulting Layer. In this case, the crs is in LatLng, so we set
it to be 4326. zoom varies between use cases, so it was just chosen arbitrarily for this example. The resulting
rasterized_layer is a TiledRasterLayer that we can now analyze and/or ingest.

2.12 geopyspark package

geopyspark.geopyspark_conf(master=None, appName=None, additional_jar_dirs=[])
Construct the base SparkConf for use with GeoPySpark. This configuration object may be used as is , or may
be adjusted according to the user’s needs.

Note: The GEOPYSPARK_JARS_PATH environment variable may contain a colon-separated list of directories
to search for JAR files to make available via the SparkConf.

Parameters

• master (string) – The master URL to connect to, such as “local” to run locally with
one thread, “local[4]” to run locally with 4 cores, or “spark://master:7077” to run on a Spark
standalone cluster.

• appName (string) – The name of the application, as seen in the Spark console

• additional_jar_dirs (list, optional) – A list of directory locations that
might contain JAR files needed by the current script. Already includes $(pwd)/jars.

62 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Returns SparkConf

class geopyspark.Tile
Represents a raster in GeoPySpark.

Note: All rasters in GeoPySpark are represented as having multiple bands, even if the original raster just
contained one.

Parameters

• cells (nd.array) – The raster data itself. It is contained within a NumPy array.

• data_type (str) – The data type of the values within data if they were in Scala.

• no_data_value – The value that represents no data value in the raster. This can be
represented by a variety of types depending on the value type of the raster.

cells
nd.array – The raster data itself. It is contained within a NumPy array.

data_type
str – The data type of the values within data if they were in Scala.

no_data_value
The value that represents no data value in the raster. This can be represented by a variety of types depending
on the value type of the raster.

cell_type
Alias for field number 1

cells
Alias for field number 0

count(value)→ integer – return number of occurrences of value

static dtype_to_cell_type(dtype)
Converts a np.dtype to the corresponding GeoPySpark cell_type.

Note: bool, complex64, complex128, and complex256, are currently not supported np.
dtypes.

Parameters dtype (np.dtype) – The dtype of the numpy array.

Returns str. The GeoPySpark cell_type equivalent of the dtype.

Raises TypeError – If the given dtype is not a supported data type.

classmethod from_numpy_array(numpy_array, no_data_value=None)
Creates an instance of Tile from a numpy array.

Parameters

• numpy_array (np.array) – The numpy array to be used to represent the cell values
of the Tile.

2.12. geopyspark package 63

GeoPySpark Documentation, Release 0.4.1

Note: GeoPySpark does not support arrays with the following data types: bool,
complex64, complex128, and complex256.

• no_data_value (optional) – The value that represents no data value in the raster.
This can be represented by a variety of types depending on the value type of the raster. If
not given, then the value will be None.

Returns Tile

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

no_data_value
Alias for field number 2

class geopyspark.Extent
The “bounding box” or geographic region of an area on Earth a raster represents.

Parameters

• xmin (float) – The minimum x coordinate.

• ymin (float) – The minimum y coordinate.

• xmax (float) – The maximum x coordinate.

• ymax (float) – The maximum y coordinate.

xmin
float – The minimum x coordinate.

ymin
float – The minimum y coordinate.

xmax
float – The maximum x coordinate.

ymax
float – The maximum y coordinate.

count(value)→ integer – return number of occurrences of value

classmethod from_polygon(polygon)
Creates a new instance of Extent from a Shapely Polygon.

The new Extent will contain the min and max coordinates of the Polygon; regardless of the Polygon’s
shape.

Parameters polygon (shapely.geometry.Polygon) – A Shapely Polygon.

Returns Extent

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

to_polygon
Converts this instance to a Shapely Polygon.

The resulting Polygon will be in the shape of a box.

Returns shapely.geometry.Polygon

xmax
Alias for field number 2

64 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

xmin
Alias for field number 0

ymax
Alias for field number 3

ymin
Alias for field number 1

class geopyspark.ProjectedExtent
Describes both the area on Earth a raster represents in addition to its CRS.

Parameters

• extent (Extent) – The area the raster represents.

• epsg (int, optional) – The EPSG code of the CRS.

• proj4 (str, optional) – The Proj.4 string representation of the CRS.

extent
Extent – The area the raster represents.

epsg
int, optional – The EPSG code of the CRS.

proj4
str, optional – The Proj.4 string representation of the CRS.

Note: Either epsg or proj4 must be defined.

count(value)→ integer – return number of occurrences of value

epsg
Alias for field number 1

extent
Alias for field number 0

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

proj4
Alias for field number 2

class geopyspark.TemporalProjectedExtent
Describes the area on Earth the raster represents, its CRS, and the time the data was collected.

Parameters

• extent (Extent) – The area the raster represents.

• instant (datetime.datetime) – The time stamp of the raster.

• epsg (int, optional) – The EPSG code of the CRS.

• proj4 (str, optional) – The Proj.4 string representation of the CRS.

extent
Extent – The area the raster represents.

instant
datetime.datetime – The time stamp of the raster.

2.12. geopyspark package 65

GeoPySpark Documentation, Release 0.4.1

epsg
int, optional – The EPSG code of the CRS.

proj4
str, optional – The Proj.4 string representation of the CRS.

Note: Either epsg or proj4 must be defined.

count(value)→ integer – return number of occurrences of value

epsg
Alias for field number 2

extent
Alias for field number 0

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

instant
Alias for field number 1

proj4
Alias for field number 3

class geopyspark.SpatialKey
Represents the position of a raster within a grid. This grid is a 2D plane where raster positions are represented
by a pair of coordinates.

Parameters

• col (int) – The column of the grid, the numbers run east to west.

• row (int) – The row of the grid, the numbers run north to south.

col
int – The column of the grid, the numbers run east to west.

row
int – The row of the grid, the numbers run north to south.

col
Alias for field number 0

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

row
Alias for field number 1

class geopyspark.SpaceTimeKey
Represents the position of a raster within a grid. This grid is a 3D plane where raster positions are represented
by a pair of coordinates as well as a z value that represents time.

Parameters

• col (int) – The column of the grid, the numbers run east to west.

• row (int) – The row of the grid, the numbers run north to south.

• instant (datetime.datetime) – The time stamp of the raster.

66 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

col
int – The column of the grid, the numbers run east to west.

row
int – The row of the grid, the numbers run north to south.

instant
datetime.datetime – The time stamp of the raster.

col
Alias for field number 0

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

instant
Alias for field number 2

row
Alias for field number 1

class geopyspark.Metadata(bounds, crs, cell_type, extent, layout_definition)
Information of the values within a RasterLayer or TiledRasterLayer. This data pertains to the layout
and other attributes of the data within the classes.

Parameters

• bounds (Bounds) – The Bounds of the values in the class.

• crs (str or int) – The CRS of the data. Can either be the EPSG code, well-known
name, or a PROJ.4 projection string.

• cell_type (str or CellType) – The data type of the cells of the rasters.

• extent (Extent) – The Extent that covers the all of the rasters.

• layout_definition (LayoutDefinition) – The LayoutDefinition of all
rasters.

bounds
Bounds – The Bounds of the values in the class.

crs
str or int – The CRS of the data. Can either be the EPSG code, well-known name, or a PROJ.4 projection
string.

cell_type
str – The data type of the cells of the rasters.

no_data_value
int or float or None – The noData value of the rasters within the layer. This can either be None, an int,
or a float depending on the cell_type.

extent
Extent – The Extent that covers the all of the rasters.

tile_layout
TileLayout – The TileLayout that describes how the rasters are orginized.

layout_definition
LayoutDefinition – The LayoutDefinition of all rasters.

2.12. geopyspark package 67

GeoPySpark Documentation, Release 0.4.1

classmethod from_dict(metadata_dict)
Creates Metadata from a dictionary.

Parameters metadata_dict (dict) – The Metadata of a RasterLayer or
TiledRasterLayer instance that is in dict form.

Returns Metadata

to_dict()
Converts this instance to a dict.

Returns dict

class geopyspark.TileLayout
Describes the grid in which the rasters within a Layer should be laid out.

Parameters

• layoutCols (int) – The number of columns of rasters that runs east to west.

• layoutRows (int) – The number of rows of rasters that runs north to south.

• tileCols (int) – The number of columns of pixels in each raster that runs east to west.

• tileRows (int) – The number of rows of pixels in each raster that runs north to south.

layoutCols
int – The number of columns of rasters that runs east to west.

layoutRows
int – The number of rows of rasters that runs north to south.

tileCols
int – The number of columns of pixels in each raster that runs east to west.

tileRows
int – The number of rows of pixels in each raster that runs north to south.

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

layoutCols
Alias for field number 0

layoutRows
Alias for field number 1

tileCols
Alias for field number 2

tileRows
Alias for field number 3

class geopyspark.GlobalLayout
TileLayout type that spans global CRS extent.

When passed in place of LayoutDefinition it signifies that a LayoutDefinition instance should be constructed
such that it fits the global CRS extent. The cell resolution of resulting layout will be one of resolutions implied
by power of 2 pyramid for that CRS. Tiling to this layout will likely result in either up-sampling or down-
sampling the source raster.

Parameters

• tile_size (int) – The number of columns and row pixels in each tile.

68 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

• zoom (int, optional) – Override the zoom level in power of 2 pyramid.

• threshold (float, optional) – The percentage difference between a cell size and
a zoom level and the resolution difference between that zoom level and the next that is
tolerated to snap to the lower-resolution zoom level. For example, if this paramter is 0.1, that
means we’re willing to downsample rasters with a higher resolution in order to fit them to
some zoom level Z, if the difference is resolution is less than or equal to 10% the difference
between the resolutions of zoom level Z and zoom level Z+1.

tile_size
int – The number of columns and row pixels in each tile.

zoom
int – The desired zoom level of the layout.

threshold
float, optional – The percentage difference between a cell size and a zoom level and the resolution differ-
ence between that zoom level and the next that is tolerated to snap to the lower-resolution zoom level.

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

threshold
Alias for field number 2

tile_size
Alias for field number 0

zoom
Alias for field number 1

class geopyspark.LocalLayout
TileLayout type that snaps the layer extent.

When passed in place of LayoutDefinition it signifies that a LayoutDefinition instances should be constructed
over the envelope of the layer pixels with given tile size. Resulting TileLayout will match the cell resolution of
the source rasters.

Parameters

• tile_size (int, optional) – The number of columns and row pixels in each tile. If
this is None, then the sizes of each tile will be set using tile_cols and tile_rows.

• tile_cols (int, optional) – The number of column pixels in each tile. This super-
sedes tile_size. Meaning if this and tile_size are set, then this will be used for the
number of colunn pixles. If None, then the number of column pixels will default to 256.

• tile_rows (int, optional) – The number of rows pixels in each tile. This super-
sedes tile_size. Meaning if this and tile_size are set, then this will be used for the
number of row pixles. If None, then the number of row pixels will default to 256.

tile_cols
int – The number of column pixels in each tile

tile_rows
int – The number of rows pixels in each tile. This supersedes

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

2.12. geopyspark package 69

GeoPySpark Documentation, Release 0.4.1

tile_cols
Alias for field number 0

tile_rows
Alias for field number 1

class geopyspark.LayoutDefinition
Describes the layout of the rasters within a Layer and how they are projected.

Parameters

• extent (Extent) – The Extent of the layout.

• tileLayout (TileLayout) – The TileLayout of how the rasters within the Layer.

extent
Extent – The Extent of the layout.

tileLayout
TileLayout – The TileLayout of how the rasters within the Layer.

count(value)→ integer – return number of occurrences of value

extent
Alias for field number 0

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

tileLayout
Alias for field number 1

class geopyspark.Bounds
Represents the grid that covers the area of the rasters in a Layer on a grid.

Parameters

• minKey (SpatialKey or SpaceTimeKey) – The smallest SpatialKey or
SpaceTimeKey.

• minKey – The largest SpatialKey or SpaceTimeKey.

minKey
SpatialKey or SpaceTimeKey – The smallest SpatialKey or SpaceTimeKey.

minKey
SpatialKey or SpaceTimeKey – The largest SpatialKey or SpaceTimeKey.

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

maxKey
Alias for field number 1

minKey
Alias for field number 0

class geopyspark.RasterizerOptions
Represents options available to geometry rasterizer

Parameters

• includePartial (bool, optional) – Include partial pixel intersection (default:
True)

70 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

• sampleType (str, optional) – ‘PixelIsArea’ or ‘PixelIsPoint’ (default: ‘PixelIs-
Point’)

includePartial
bool – Include partial pixel intersection.

sampleType
str – How the sampling should be performed during rasterization.

count(value)→ integer – return number of occurrences of value

includePartial
Alias for field number 0

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

sampleType
Alias for field number 1

geopyspark.zfactor_lat_lng_calculator(unit)
Produces the Scala class, ZFactorCalculator as a JavaObject.

The resulting ZFactorCalculator produced using this method assumes that the Tiles it will be deriving
zfactors from are in LatLng (aka epsg:4326). This caculator can still be used on Tiles with different
projections, however, the resulting Slope calculations may be off.

Parameters units (str or Unit) – The unit of elevation in the target layer.

Returns py4j.JavaObject

geopyspark.zfactor_calculator(mapped_zfactors)
Produces the Scala class, ZFactorCalculator as a JavaObject.

Unlike the ZFactorCalculator produced in zfactor_lat_lng_calculator(), this resulting
ZFactorCalculator can used on Tiles in a different projection. However, it cannot be used between
different types of projections. For example, a ZFactorCalculator produced for a Layer that is in
WebMercator will not create an accurate ZFactor for a Layer that is in LatLng.

Parameters mapped_zfactors (dict) – A dict that maps lattitudes to ZFactors. It is not
required to supply a mapping for ever lattitude intersected in the layer. Rather, based on the
lattitudes given, a linear interpolation will be performed and any lattitude not mapped will have
its ZFactor derived from that interpolation.

Returns py4j.JavaObject

class geopyspark.HashPartitionStrategy
Represents a partitioning strategy for a layer that uses Spark’s HashPartitioner with a set number of
partitions.

Parameters num_partitions (int, optional) – The number of partitions that should
be used during partitioning. Default is, None. If None the resulting layer will have a
HashPartitioner with the number of partitions being either the same as the input layer’s,
or a number computed by the method.

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

num_partitions
Alias for field number 0

2.12. geopyspark package 71

GeoPySpark Documentation, Release 0.4.1

class geopyspark.SpatialPartitionStrategy
Represents a partitioning strategy for a layer that uses GeoPySpark’s SpatialPartitioner with a set
number of partitions.

This partitioner will try and group Tiles together that are spatially near each other in the same partition. In
order to do this, each Tile has their Key Index calculated using the space filling curve index, Z-Curve.

Parameters

• num_partitions (int, optional) – The number of partitions that should be
used during partitioning. Default is, None. If None the resulting layer will have a
HashPartitioner with the number of partitions being either the same as the input
layer’s, or a number computed by the method.

• bits (int, optional) – Helps determine how much data should be placed in each
partition. Default is, 8.

GeoPySpark uses a Z-order curve to determine how values within the layer should be
grouped. This is done by first finding the Key Index of a value and then performing
a bitwise right shift on the resulting index. From the remaining bits, a partition is selected
such that those indexes with the same remaining bits will be in the same partition. Therefore,
as the number of bits shifted to the right increases, so then too does the group sizes.

num_partitions
int – The number of partitions that should be used during partitioning.

bits
int – Determine how much data should be placed in each partition.

bits
Alias for field number 1

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

num_partitions
Alias for field number 0

class geopyspark.SpaceTimePartitionStrategy
Represents a partitioning strategy for a layer that uses GeoPySpark’s SpaceTimePartitioner with a set
number of partitions, units of time, and temporal resolution.

This partitioner will try and group Tiles together that are spatially and temproally near each other in the same
partition. In order to do this, each Tile has their Key Index calculated using the space filling curve index,
Z-Curve.

Note: This partitiong strategy will only work on SPACETIME layers, and will fail if given a SPATIAL one.
For SPATIAL layers, please see SpatialPartitionStrategy.

Parameters

• time_unit (str or TimeUnit) – Which time unit should be used when saving spatial-
temporal data. This controls the resolution of each index. Meaning, what time intervals are
used to seperate each record.

• num_partitions (int, optional) – The number of partitions that should be
used during partitioning. Default is, None. If None the resulting layer will have a

72 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

HashPartitioner with the number of partitions being either the same as the input
layer’s, or a number computed by the method.

• bits (int, optional) – Helps determine how much data should be placed in each
partition. Default is, 8.

GeoPySpark uses a Z-order curve to determine how values within the layer should be
grouped. This is done by first finding the Key Index of a value and then performing
a bitwise right shift on the resulting index. From the remaining bits, a partition is selected
such that those indexes with the same remaining bits will be in the same partition. Therefore,
as the number of bits shifted to the right increases, so then too does the group sizes.

• time_resolution (str or int, optional) – Determines how data for each
time_unit should be grouped together. By default, no grouping will occur.

As an example, having a time_unit of WEEKS and a time_resolution of 5
will cause the data to be grouped and stored together in units of 5 weeks. If however
time_resolution is not specified, then the data will be grouped and stored in units
of single weeks.

This value can either be an int or a string representation of an int.

time_unit
str or TimeUnit – Which time unit should be used when saving spatial-temporal data.

num_partitions
int – The number of partitions that should be used during partitioning.

bits
int – Helps determine how much data should be placed in each partition.

time_resolution
str or int – Determines how data for each time_unit should be grouped together.

bits
Alias for field number 2

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

num_partitions
Alias for field number 1

time_resolution
Alias for field number 3

time_unit
Alias for field number 0

geopyspark.read_layer_metadata(uri, layer_name, layer_zoom)
Reads the metadata from a saved layer without reading in the whole layer.

Parameters

• uri (str) – The Uniform Resource Identifier used to point towards the desired GeoTrellis
catalog to be read from. The shape of this string varies depending on backend.

• layer_name (str) – The name of the GeoTrellis catalog to be read from.

• layer_zoom (int) – The zoom level of the layer that is to be read.

Returns Metadata

2.12. geopyspark package 73

GeoPySpark Documentation, Release 0.4.1

geopyspark.read_value(uri, layer_name, layer_zoom, col, row, zdt=None)
Reads a single Tile from a GeoTrellis catalog. Unlike other functions in this module, this will not return a
TiledRasterLayer, but rather a GeoPySpark formatted raster.

Note: When requesting a tile that does not exist, None will be returned.

Parameters

• uri (str) – The Uniform Resource Identifier used to point towards the desired GeoTrellis
catalog to be read from. The shape of this string varies depending on backend.

• layer_name (str) – The name of the GeoTrellis catalog to be read from.

• layer_zoom (int) – The zoom level of the layer that is to be read.

• col (int) – The col number of the tile within the layout. Cols run east to west.

• row (int) – The row number of the tile within the layout. Row run north to south.

• zdt (datetime.datetime) – The time stamp of the tile if the data is spatial-temporal.
This is represented as a datetime.datetime. instance. The default value is, None. If
None, then only the spatial area will be queried.

Returns Tile

geopyspark.query(uri, layer_name, layer_zoom=None, query_geom=None, time_intervals=None,
query_proj=None, num_partitions=None)

Queries a single, zoom layer from a GeoTrellis catalog given spatial and/or time parameters.

Note: The whole layer could still be read in if intersects and/or time_intervals have not been set,
or if the querried region contains the entire layer.

Parameters

• layer_type (str or LayerType) – What the layer type of the geotiffs are. This is repre-
sented by either constants within LayerType or by a string.

• uri (str) – The Uniform Resource Identifier used to point towards the desired GeoTrellis
catalog to be read from. The shape of this string varies depending on backend.

• layer_name (str) – The name of the GeoTrellis catalog to be querried.

• layer_zoom (int, optional) – The zoom level of the layer that is to be querried. If
None, then the layer_zoom will be set to 0.

• query_geom (bytes or shapely.geometry or Extent, Optional) – The desired spatial area
to be returned. Can either be a string, a shapely geometry, or instance of Extent, or a
WKB verson of the geometry.

Note: Not all shapely geometires are supported. The following is are the types that are
supported: * Point * Polygon * MultiPolygon

Note: Only layers that were made from spatial, singleband GeoTiffs can query a Point.
All other types are restricted to Polygon and MulitPolygon.

74 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Note: If the queried region does not intersect the layer, then an empty layer will be returned.

If not specified, then the entire layer will be read.

• time_intervals ([datetime.datetime], optional) – A list of the time intervals
to query. This parameter is only used when querying spatial-temporal data. The default
value is, None. If None, then only the spatial area will be querried.

• query_proj (int or str, optional) – The crs of the querried geometry if it is
different than the layer it is being filtered against. If they are different and this is not set,
then the returned TiledRasterLayer could contain incorrect values. If None, then the
geometry and layer are assumed to be in the same projection.

• num_partitions (int, optional) – Sets RDD partition count when reading from
catalog.

Returns TiledRasterLayer

geopyspark.write(uri, layer_name, tiled_raster_layer, index_strategy=<IndexingMethod.ZORDER:
’zorder’>, time_unit=None, time_resolution=None, store=None)

Writes a tile layer to a specified destination.

Parameters

• uri (str) – The Uniform Resource Identifier used to point towards the desired location
for the tile layer to written to. The shape of this string varies depending on backend.

• layer_name (str) – The name of the new, tile layer.

• layer_zoom (int) – The zoom level the layer should be saved at.

• tiled_raster_layer (TiledRasterLayer) – The TiledRasterLayer to be
saved.

• index_strategy (str or IndexingMethod) – The method used to orginize the saved
data. Depending on the type of data within the layer, only certain methods are available.
Can either be a string or a IndexingMethod attribute. The default method used is,
IndexingMethod.ZORDER.

• time_unit (str or TimeUnit, optional) – Which time unit should be used when saving
spatial-temporal data. This controls the resolution of each index. Meaning, what time in-
tervals are used to seperate each record. While this is set to None as default, it must be set
if saving spatial-temporal data. Depending on the indexing method chosen, different time
units are used.

• time_resolution (str or int, optional) – Determines how data for each
time_unit should be grouped together. By default, no grouping will occur.

As an example, having a time_unit of WEEKS and a time_resolution of 5
will cause the data to be grouped and stored together in units of 5 weeks. If however
time_resolution is not specified, then the data will be grouped and stored in units
of single weeks.

This value can either be an int or a string representation of an int.

• store (str or AttributeStore, optional) – AttributeStore instance or URI for
layer metadata lookup.

class geopyspark.AttributeStore(uri)
AttributeStore provides a way to read and write GeoTrellis layer attributes.

2.12. geopyspark package 75

GeoPySpark Documentation, Release 0.4.1

Internally all attribute values are stored as JSON, here they are exposed as dictionaries. Classes often stored
have a .from_dict and .to_dict methods to bridge the gap:

import geopyspark as gps
store = gps.AttributeStore("s3://azavea-datahub/catalog")
hist = store.layer("us-nlcd2011-30m-epsg3857", zoom=7).read("histogram")
hist = gps.Histogram.from_dict(hist)

class Attributes(store, layer_name, layer_zoom)
Accessor class for all attributes for a given layer

delete(name)
Delete attribute by name

Parameters name (str) – Attribute name

layer_metadata()

read(name)
Read layer attribute by name as a dict

Parameters name (str) –
Returns Attribute value
Return type dict

write(name, value)
Write layer attribute value as a dict

Parameters
• name (str) – Attribute name
• value (dict) – Attribute value

classmethod build(store)
Builds AttributeStore from URI or passes an instance through.

Parameters uri (str or AttributeStore) – URI for AttributeStore object or instance.

Returns AttributeStore

classmethod cached(uri)
Returns cached version of AttributeStore for URI or creates one

contains(name, zoom=None)
Checks if this store contains a layer metadata.

Parameters

• name (str) – Layer name

• zoom (int, optional) – Layer zoom

Returns bool

delete(name, zoom=None)
Delete layer and all its attributes

Parameters

• name (str) – Layer name

• zoom (int, optional) – Layer zoom

layer(name, zoom=None)
Layer Attributes object for given layer :param name: Layer name :type name: str :param zoom: Layer
zoom :type zoom: int, optional

Returns Attributes

76 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

layers()
List all layers Attributes objects

Returns [:class:`~geopyspark.geotrellis.catalog.AttributeStore.
Attributes`]

geopyspark.get_colors_from_colors(colors)
Returns a list of integer colors from a list of Color objects from the colortools package.

Parameters colors ([colortools.Color]) – A list of color stops using colortools.Color

Returns [int]

geopyspark.get_colors_from_matplotlib(ramp_name, num_colors=256)
Returns a list of color breaks from the color ramps defined by Matplotlib.

Parameters

• ramp_name (str) – The name of a matplotlib color ramp. See the matplotlib documenta-
tion for a list of names and details on each color ramp.

• num_colors (int, optional) – The number of color breaks to derive from the named
map.

Returns [int]

class geopyspark.ColorMap(cmap)
A class that wraps a GeoTrellis ColorMap class.

Parameters cmap (py4j.java_gateway.JavaObject) – The JavaObject that represents
the GeoTrellis ColorMap.

cmap
py4j.java_gateway.JavaObject – The JavaObject that represents the GeoTrellis ColorMap.

classmethod build(breaks, colors=None, no_data_color=0, fallback=0, classifica-
tion_strategy=<ClassificationStrategy.LESS_THAN_OR_EQUAL_TO:
’LessThanOrEqualTo’>)

Given breaks and colors, build a ColorMap object.

Parameters

• breaks (dict or list or np.ndarray or Histogram) – If a dict then a mapping from
tile values to colors, the latter represented as integers e.g., 0xff000080 is red at half opacity.
If a list then tile values that specify breaks in the color mapping. If a Histogram then
a histogram from which breaks can be derived.

• colors (str or list, optional) – If a str then the name of a matplotlib color
ramp. If a list then either a list of colortools Color objects or a list of integers contain-
ing packed RGBA values. If None, then the ColorMapwill be created from the breaks
given.

• no_data_color (int, optional) – A color to replace NODATA values with

• fallback (int, optional) – A color to replace cells that have no value in the map-
ping

• classification_strategy (str or ClassificationStrategy , optional)
– A string giving the strategy for converting tile values to colors. e.g., if
ClassificationStrategy.LESS_THAN_OR_EQUAL_TO is specified, and the
break map is {3: 0xff0000ff, 4: 0x00ff00ff}, then values up to 3 map to red, values from
above 3 and up to and including 4 become green, and values over 4 become the fallback
color.

2.12. geopyspark package 77

GeoPySpark Documentation, Release 0.4.1

Returns ColorMap

classmethod from_break_map(break_map, no_data_color=0, fallback=0, classifica-
tion_strategy=<ClassificationStrategy.LESS_THAN_OR_EQUAL_TO:
’LessThanOrEqualTo’>)

Converts a dictionary mapping from tile values to colors to a ColorMap.

Parameters

• break_map (dict) – A mapping from tile values to colors, the latter represented as
integers e.g., 0xff000080 is red at half opacity.

• no_data_color (int, optional) – A color to replace NODATA values with

• fallback (int, optional) – A color to replace cells that have no value in the map-
ping

• classification_strategy (str or ClassificationStrategy , optional)
– A string giving the strategy for converting tile values to colors. e.g., if
ClassificationStrategy.LESS_THAN_OR_EQUAL_TO is specified, and the
break map is {3: 0xff0000ff, 4: 0x00ff00ff}, then values up to 3 map to red, values from
above 3 and up to and including 4 become green, and values over 4 become the fallback
color.

Returns ColorMap

classmethod from_colors(breaks, color_list, no_data_color=0, fallback=0, classifica-
tion_strategy=<ClassificationStrategy.LESS_THAN_OR_EQUAL_TO:
’LessThanOrEqualTo’>)

Converts lists of values and colors to a ColorMap.

Parameters

• breaks (list) – The tile values that specify breaks in the color mapping.

• color_list ([int]) – The colors corresponding to the values in the breaks list, rep-
resented as integers—e.g., 0xff000080 is red at half opacity.

• no_data_color (int, optional) – A color to replace NODATA values with

• fallback (int, optional) – A color to replace cells that have no value in the map-
ping

• classification_strategy (str or ClassificationStrategy , optional)
– A string giving the strategy for converting tile values to colors. e.g., if
ClassificationStrategy.LESS_THAN_OR_EQUAL_TO is specified, and the
break map is {3: 0xff0000ff, 4: 0x00ff00ff}, then values up to 3 map to red, values from
above 3 and up to and including 4 become green, and values over 4 become the fallback
color.

Returns ColorMap

classmethod from_histogram(histogram, color_list, no_data_color=0, fallback=0, classifica-
tion_strategy=<ClassificationStrategy.LESS_THAN_OR_EQUAL_TO:
’LessThanOrEqualTo’>)

Converts a wrapped GeoTrellis histogram into a ColorMap.

Parameters

• histogram (Histogram) – A Histogram instance; specifies breaks

• color_list ([int]) – The colors corresponding to the values in the breaks list, rep-
resented as integers e.g., 0xff000080 is red at half opacity.

78 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

• no_data_color (int, optional) – A color to replace NODATA values with

• fallback (int, optional) – A color to replace cells that have no value in the map-
ping

• classification_strategy (str or ClassificationStrategy , optional)
– A string giving the strategy for converting tile values to colors. e.g., if
ClassificationStrategy.LESS_THAN_OR_EQUAL_TO is specified, and the
break map is {3: 0xff0000ff, 4: 0x00ff00ff}, then values up to 3 map to red, values from
above 3 and up to and including 4 become green, and values over 4 become the fallback
color.

Returns ColorMap

static nlcd_colormap()
Returns a color map for NLCD tiles.

Returns ColorMap

class geopyspark.LayerType
The type of the key within the tuple of the wrapped RDD.

SPACETIME = 'spacetime'

SPATIAL = 'spatial'
Indicates that the RDD contains (K, V) pairs, where the K has a spatial and time attribute. Both
TemporalProjectedExtent and SpaceTimeKey are examples of this type of K.

class geopyspark.IndexingMethod
How the wrapped should be indexed when saved.

HILBERT = 'hilbert'
A key indexing method. Works only for RDDs that contain SpatialKey . This method provides the
fastest lookup of all the key indexing method, however, it does not give good locality guarantees. It is
recommended then that this method should only be used when locality is not important for your analysis.

ROWMAJOR = 'rowmajor'

ZORDER = 'zorder'
A key indexing method. Works for RDDs that contain both SpatialKey and SpaceTimeKey . Note,
indexes are determined by the x, y, and if SPACETIME, the temporal resolutions of a point. This is
expressed in bits, and has a max value of 62. Thus if the sum of those resolutions are greater than 62, then
the indexing will fail.

class geopyspark.ResampleMethod
Resampling Methods.

AVERAGE = 'Average'

BILINEAR = 'Bilinear'

CUBIC_CONVOLUTION = 'CubicConvolution'

CUBIC_SPLINE = 'CubicSpline'

LANCZOS = 'Lanczos'

MAX = 'Max'

MEDIAN = 'Median'

MIN = 'Min'

MODE = 'Mode'

2.12. geopyspark package 79

GeoPySpark Documentation, Release 0.4.1

NEAREST_NEIGHBOR = 'NearestNeighbor'

class geopyspark.TimeUnit
ZORDER time units.

DAYS = 'days'

HOURS = 'hours'

MILLIS = 'millis'

MINUTES = 'minutes'

MONTHS = 'months'

SECONDS = 'seconds'

WEEKS = 'weeks'

YEARS = 'years'

class geopyspark.Operation
Focal opertions.

ASPECT = 'Aspect'

MAX = 'Max'

MEAN = 'Mean'

MEDIAN = 'Median'

MIN = 'Min'

MODE = 'Mode'

STANDARD_DEVIATION = 'StandardDeviation'

SUM = 'Sum'

VARIANCE = 'Variance'

class geopyspark.Neighborhood
Neighborhood types.

ANNULUS = 'Annulus'

CIRCLE = 'Circle'

NESW = 'Nesw'

SQUARE = 'Square'

WEDGE = 'Wedge'

class geopyspark.ClassificationStrategy
Classification strategies for color mapping.

EXACT = 'Exact'

GREATER_THAN = 'GreaterThan'

GREATER_THAN_OR_EQUAL_TO = 'GreaterThanOrEqualTo'

LESS_THAN = 'LessThan'

LESS_THAN_OR_EQUAL_TO = 'LessThanOrEqualTo'

class geopyspark.CellType
Cell types.

80 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

BOOL = 'bool'

BOOLRAW = 'boolraw'

FLOAT32 = 'float32'

FLOAT32RAW = 'float32raw'

FLOAT64 = 'float64'

FLOAT64RAW = 'float64raw'

INT16 = 'int16'

INT16RAW = 'int16raw'

INT32 = 'int32'

INT32RAW = 'int32raw'

INT8 = 'int8'

INT8RAW = 'int8raw'

UINT16 = 'uint16'

UINT16RAW = 'uint16raw'

UINT8 = 'uint8'

UINT8RAW = 'uint8raw'

class geopyspark.ColorRamp
ColorRamp names.

BLUE_TO_ORANGE = 'BlueToOrange'

BLUE_TO_RED = 'BlueToRed'

CLASSIFICATION_BOLD_LAND_USE = 'ClassificationBoldLandUse'

CLASSIFICATION_MUTED_TERRAIN = 'ClassificationMutedTerrain'

COOLWARM = 'CoolWarm'

GREEN_TO_RED_ORANGE = 'GreenToRedOrange'

HEATMAP_BLUE_TO_YELLOW_TO_RED_SPECTRUM = 'HeatmapBlueToYellowToRedSpectrum'

HEATMAP_DARK_RED_TO_YELLOW_WHITE = 'HeatmapDarkRedToYellowWhite'

HEATMAP_LIGHT_PURPLE_TO_DARK_PURPLE_TO_WHITE = 'HeatmapLightPurpleToDarkPurpleToWhite'

HEATMAP_YELLOW_TO_RED = 'HeatmapYellowToRed'

Hot = 'Hot'

INFERNO = 'Inferno'

LIGHT_TO_DARK_GREEN = 'LightToDarkGreen'

LIGHT_TO_DARK_SUNSET = 'LightToDarkSunset'

LIGHT_YELLOW_TO_ORANGE = 'LightYellowToOrange'

MAGMA = 'Magma'

PLASMA = 'Plasma'

VIRIDIS = 'Viridis'

2.12. geopyspark package 81

GeoPySpark Documentation, Release 0.4.1

class geopyspark.StorageMethod
Internal storage methods for GeoTiffs.

STRIPED = 'Striped'

TILED = 'Tiled'

class geopyspark.ColorSpace
Color space types for GeoTiffs.

BLACK_IS_ZERO = 1

CFA = 32803

CIE_LAB = 8

CMYK = 5

ICC_LAB = 9

ITU_LAB = 10

LINEAR_RAW = 34892

LOG_L = 32844

LOG_LUV = 32845

PALETTE = 3

RGB = 2

TRANSPARENCY_MASK = 4

WHITE_IS_ZERO = 0

Y_CB_CR = 6

class geopyspark.Compression
Compression methods for GeoTiffs.

DEFLATE_COMPRESSION = 'DeflateCompression'

NO_COMPRESSION = 'NoCompression'

class geopyspark.Unit
Represents the units of elevation.

FEET = 'Feet'

METERS = 'Meters'

geopyspark.cost_distance(friction_layer, geometries, max_distance)
Performs cost distance of a TileLayer.

Parameters

• friction_layer (TiledRasterLayer) – TiledRasterLayer of a friction sur-
face to traverse.

• geometries (list) – A list of shapely geometries to be used as a starting point.

Note: All geometries must be in the same CRS as the TileLayer.

• max_distance (int or float) – The maximum cost that a path may reach before
the operation. stops. This value can be an int or float.

82 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Returns TiledRasterLayer

geopyspark.euclidean_distance(geometry, source_crs, zoom, cell_type=<CellType.FLOAT64:
’float64’>)

Calculates the Euclidean distance of a Shapely geometry.

Parameters

• geometry (shapely.geometry) – The input geometry to compute the Euclidean dis-
tance for.

• source_crs (str or int) – The CRS of the input geometry.

• zoom (int) – The zoom level of the output raster.

• cell_type (str or CellType, optional) – The data type of the cells for the new layer. If
not specified, then CellType.FLOAT64 is used.

Note: This function may run very slowly for polygonal inputs if they cover many cells of the output raster.

Returns TiledRasterLayer

geopyspark.hillshade(tiled_raster_layer, zfactor_calculator, band=0, azimuth=315.0, altitude=45.0)
Computes Hillshade (shaded relief) from a raster.

The resulting raster will be a shaded relief map (a hill shading) based on the sun altitude, azimuth, and the
zfactor. The zfactor is a conversion factor from map units to elevation units.

The hillshade` operation will be carried out in a SQUARE neighborhood with with an extent of 1. The
zfactor will be derived from the zfactor_calculator for each Tile in the Layer. The resulting Layer
will have a cell_type of INT16 regardless of the input Layer’s cell_type; as well as have a single band,
that represents the calculated hillshade.

Returns a raster of ShortConstantNoDataCellType.

For descriptions of parameters, please see Esri Desktop’s description of Hillshade.

Parameters

• tiled_raster_layer (TiledRasterLayer) – The base layer that contains the
rasters used to compute the hillshade.

• zfactor_calculator (py4j.JavaObject) – A JavaObject that represents
the Scala ZFactorCalculator class. This can be created using either the
zfactor_lat_lng_calculator() or the zfactor_calculator() methods.

• band (int, optional) – The band of the raster to base the hillshade calculation on.
Default is 0.

• azimuth (float, optional) – The azimuth angle of the source of light. Default value
is 315.0.

• altitude (float, optional) – The angle of the altitude of the light above the hori-
zon. Default is 45.0.

Returns TiledRasterLayer

class geopyspark.Histogram(scala_histogram)
A wrapper class for a GeoTrellis Histogram.

The underlying histogram is produced from the values within a TiledRasterLayer. These values repre-
sented by the histogram can either be Int or Float depending on the data type of the cells in the layer.

2.12. geopyspark package 83

http://goo.gl/DtVDQ

GeoPySpark Documentation, Release 0.4.1

Parameters scala_histogram (py4j.JavaObject) – An instance of the GeoTrellis his-
togram.

scala_histogram
py4j.JavaObject – An instance of the GeoTrellis histogram.

bin_counts()
Returns a list of tuples where the key is the bin label value and the value is the label’s respective count.

Returns [(int, int)] or [(float, int)]

bucket_count()
Returns the number of buckets within the histogram.

Returns int

cdf()
Returns the cdf of the distribution of the histogram.

Returns [(float, float)]

classmethod from_dict(value)
Encodes histogram as a dictionary

item_count(item)
Returns the total number of times a given item appears in the histogram.

Parameters item (int or float) – The value whose occurences should be counted.

Returns The total count of the occurences of item in the histogram.

Return type int

max()
The largest value of the histogram.

This will return either an int or float depedning on the type of values within the histogram.

Returns int or float

mean()
Determines the mean of the histogram.

Returns float

median()
Determines the median of the histogram.

Returns float

merge(other_histogram)
Merges this instance of Histogram with another. The resulting Histogram will contain values from
both ‘‘Histogram‘‘s

Parameters other_histogram (Histogram) – The Histogram that should be merged
with this instance.

Returns Histogram

min()
The smallest value of the histogram.

This will return either an int or float depedning on the type of values within the histogram.

Returns int or float

84 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

min_max()
The largest and smallest values of the histogram.

This will return either an int or float depedning on the type of values within the histogram.

Returns (int, int) or (float, float)

mode()
Determines the mode of the histogram.

This will return either an int or float depedning on the type of values within the histogram.

Returns int or float

quantile_breaks(num_breaks)
Returns quantile breaks for this Layer.

Parameters num_breaks (int) – The number of breaks to return.

Returns [int]

to_dict()
Encodes histogram as a dictionary

Returns dict

values()
Lists each indiviual value within the histogram.

This will return a list of either ‘‘int‘‘s or ‘‘float‘‘s depedning on the type of values within the histogram.

Returns [int] or [float]

class geopyspark.RasterLayer(layer_type, srdd)
A wrapper of a RDD that contains GeoTrellis rasters.

Represents a layer that wraps a RDD that contains (K, V). Where K is either ProjectedExtent or
TemporalProjectedExtent depending on the layer_type of the RDD, and V being a Tile.

The data held within this layer has not been tiled. Meaning the data has yet to be modified to fit a certain layout.
See raster_rdd for more information.

Parameters

• layer_type (str or LayerType) – What the layer type of the geotiffs are. This is repre-
sented by either constants within LayerType or by a string.

• srdd (py4j.java_gateway.JavaObject) – The coresponding Scala class. This is
what allows RasterLayer to access the various Scala methods.

pysc
pyspark.SparkContext – The SparkContext being used this session.

layer_type
LayerType – What the layer type of the geotiffs are.

srdd
py4j.java_gateway.JavaObject – The coresponding Scala class. This is what allows RasterLayer to
access the various Scala methods.

bands(band)
Select a subsection of bands from the Tiles within the layer.

2.12. geopyspark package 85

GeoPySpark Documentation, Release 0.4.1

Note: There could be potential high performance cost if operations are performed between two sub-bands
of a large data set.

Note: Due to the natue of GeoPySpark’s backend, if selecting a band that is out of bounds then the error
returned will be a py4j.protocol.Py4JJavaError and not a normal Python error.

Parameters band (int or tuple or list or range) – The band(s) to be selected
from the Tiles. Can either be a single int, or a collection of ints.

Returns RasterLayer with the selected bands.

cache()
Persist this RDD with the default storage level (C{MEMORY_ONLY}).

collect_keys()
Returns a list of all of the keys in the layer.

Note: This method should only be called on layers with a smaller number of keys, as a large number
could cause memory issues.

Returns [:class:`~geopyspark.geotrellis.SpatialKey`] or
[:ob:`~geopyspark.geotrellis.SpaceTimeKey`]

collect_metadata(layout=LocalLayout(tile_cols=256, tile_rows=256))
Iterate over the RDD records and generates layer metadata desribing the contained rasters.

:param layout (LayoutDefinition or: GlobalLayout or

LocalLayout, optional): Target raster layout for the tiling operation.

Returns Metadata

convert_data_type(new_type, no_data_value=None)
Converts the underlying, raster values to a new CellType.

Parameters

• new_type (str or CellType) – The data type the cells should be to converted to.

• no_data_value (int or float, optional) – The value that should be marked
as NoData.

Returns RasterLayer

Raises

• ValueError – If no_data_value is set and the new_type contains raw values.

• ValueError – If no_data_value is set and new_type is a boolean.

count()
Returns how many elements are within the wrapped RDD.

Returns The number of elements in the RDD.

Return type Int

86 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

filter_by_times(time_intervals)
Filters a SPACETIME layer by keeping only the values whose keys fall within a the given time interval(s).

Parameters time_intervals ([datetime.datetime]) – A list of the time intervals to
query. This list can have one or multiple elements. If just a single element, then only exact
matches with that given time will be kept. If there are multiple times given, then they are each
paired together so that they form ranges of time. In the case where there are an odd number
of elements, then the remaining time will be treated as a single query and not a range.

Note: If nothing intersects the given time_intervals, then the returned RasterLayer will be
empty.

Returns RasterLayer

classmethod from_numpy_rdd(layer_type, numpy_rdd)
Create a RasterLayer from a numpy RDD.

Parameters

• layer_type (str or LayerType) – What the layer type of the geotiffs are. This is
represented by either constants within LayerType or by a string.

• numpy_rdd (pyspark.RDD) – A PySpark RDD that contains tuples of either
ProjectedExtents or TemporalProjectedExtents and rasters that are repre-
sented by a numpy array.

Returns RasterLayer

getNumPartitions()
Returns the number of partitions set for the wrapped RDD.

Returns The number of partitions.

Return type Int

get_class_histogram()
Creates a Histogram of integer values. Suitable for classification rasters with limited number values. If
only single band is present histogram is returned directly.

Returns Histogram or [Histogram]

get_histogram()
Creates a Histogram for each band in the layer. If only single band is present histogram is returned
directly.

Returns Histogram or [Histogram]

get_min_max()
Returns the maximum and minimum values of all of the rasters in the layer.

Returns (float, float)

get_partition_strategy()
Returns the partitioning strategy if the layer has one.

Returns HashPartitioner or SpatialPartitioner or
SpaceTimePartitionStrategy or None

get_quantile_breaks(num_breaks)
Returns quantile breaks for this Layer.

2.12. geopyspark package 87

GeoPySpark Documentation, Release 0.4.1

Parameters num_breaks (int) – The number of breaks to return.

Returns [float]

get_quantile_breaks_exact_int(num_breaks)
Returns quantile breaks for this Layer. This version uses the FastMapHistogram, which counts exact
integer values. If your layer has too many values, this can cause memory errors.

Parameters num_breaks (int) – The number of breaks to return.

Returns [int]

isEmpty()
Returns a bool that is True if the layer is empty and False if it is not.

Returns Are there elements within the layer

Return type bool

layer_type

map_cells(func)
Maps over the cells of each Tile within the layer with a given function.

Note: This operation first needs to deserialize the wrapped RDD into Python and then serialize the RDD
back into a TiledRasterRDD once the mapping is done. Thus, it is advised to chain together operations
to reduce performance cost.

Parameters func (cells, nd => cells) – A function that takes two arguements:
cells and nd. Where cells is the numpy array and nd is the no_data_value of
the Tile. It returns cells which are the new cells values of the Tile represented as a
numpy array.

Returns RasterLayer

map_tiles(func)
Maps over each Tile within the layer with a given function.

Note: This operation first needs to deserialize the wrapped RDD into Python and then serialize the RDD
back into a RasterRDD once the mapping is done. Thus, it is advised to chain together operations to
reduce performance cost.

Parameters func (Tile => Tile) – A function that takes a Tile and returns a Tile.

Returns RasterLayer

merge(partition_strategy=None)
Merges the Tile of each K together to produce a single Tile.

This method will reduce each value by its key within the layer to produce a single (K, V) for every K. In
order to achieve this, each Tile that shares a K is merged together to form a single Tile. This is done by
replacing one Tile’s cells with another’s. Not all cells, if any, may be replaced, however. The following
steps are taken to determine if a cell’s value should be replaced:

1. If the cell contains a NoData value, then it will be replaced.

2. If no NoData value is set, then a cell with a value of 0 will be replaced.

88 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

3. If neither of the above are true, then the cell retain its value.

Parameters

• num_partitions (int, optional) – The number of partitions that the resulting
layer should be partitioned with. If None, then the num_partitions will the number
of partitions the layer curretly has.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions
as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting
layer will have the Partioner specified in the strategy with the with same number of
partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Returns RasterLayer

partitionBy(partition_strategy=None)
Repartitions the layer using the given partitioning strategy.

Parameters partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer
will have the Partioner specified in the strategy with the with same number of partitions
the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Returns RasterLayer

persist(storageLevel=StorageLevel(False, True, False, False, 1))
Set this RDD’s storage level to persist its values across operations after the first time it is computed. This
can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no
storage level is specified defaults to (C{MEMORY_ONLY}).

pysc

reclassify(value_map, data_type, classification_strategy=<ClassificationStrategy.LESS_THAN_OR_EQUAL_TO:
’LessThanOrEqualTo’>, replace_nodata_with=None, fallback_value=None,
strict=False)

Changes the cell values of a raster based on how the data is broken up in the given value_map.

Parameters

• value_map (dict) – A dict whose keys represent values where a break should occur
and its values are the new value the cells within the break should become.

• data_type (type) – The type of the values within the rasters. Can either be int or float.

2.12. geopyspark package 89

GeoPySpark Documentation, Release 0.4.1

• classification_strategy (str or ClassificationStrategy , optional)
– How the cells should be classified along the breaks. If unspecified, then
ClassificationStrategy.LESS_THAN_OR_EQUAL_TO will be used.

• replace_nodata_with (int or float, optional) – When remapping val-
ues, NoData values must be treated separately. If NoData values are intended to be
replaced during the reclassify, this variable should be set to the intended value. If unspec-
ified, NoData values will be preserved.

Note: Specifying replace_nodata_with will change the value of given cells, but
the NoData value of the layer will remain unchanged.

• fallback_value (int or float, optional) – Represents the
value that should be used when a cell’s value does not fall within the
classification_strategy. Default is to use the layer’s NoData value.

• strict (bool, optional) – Determines whether or not an error should be thrown
if a cell’s value does not fall within the classification_strategy. Default is,
False.

Returns RasterLayer

repartition(num_partitions=None)
Repartitions the layer to have a different number of partitions.

Parameters num_partitions (int, optional) – Desired number of partitions. Default
is, None .If None, then the exisiting number of partitions will be used.

Returns RasterLayer

reproject(target_crs, resample_method=<ResampleMethod.NEAREST_NEIGHBOR: ’Nearest-
Neighbor’>)

Reproject rasters to target_crs. The reproject does not sample past tile boundary.

Parameters

• target_crs (str or int) – Target CRS of reprojection. Either EPSG code, well-
known name, or a PROJ.4 string.

• resample_method (str or ResampleMethod, optional) – The resample method
to use for the reprojection. If none is specified, then ResampleMethods.
NEAREST_NEIGHBOR is used.

Returns RasterLayer

srdd

tile_to_layout(layout=LocalLayout(tile_cols=256, tile_rows=256), target_crs=None, resam-
ple_method=<ResampleMethod.NEAREST_NEIGHBOR: ’NearestNeighbor’>,
partition_strategy=None)

Cut tiles to layout and merge overlapping tiles. This will produce unique keys.

Parameters

• layout (Metadata or TiledRasterLayer or LayoutDefinition or
GlobalLayout or LocalLayout) – Target raster layout for the tiling operation.

• target_crs (str or int, optional) – Target CRS of reprojection. Either
EPSG code, well-known name, or a PROJ.4 string. If None, no reproject will be per-
fomed.

90 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

• resample_method (str or ResampleMethod, optional) – The
cell resample method to used during the tiling operation. Default
is‘‘ResampleMethods.NEAREST_NEIGHBOR‘‘.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions
as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting
layer will have the Partioner specified in the strategy with the with same number of
partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Returns TiledRasterLayer

to_geotiff_rdd(storage_method=<StorageMethod.STRIPED: ’Striped’>, rows_per_strip=None,
tile_dimensions=(256, 256), compression=<Compression.NO_COMPRESSION:
’NoCompression’>, color_space=<ColorSpace.BLACK_IS_ZERO: 1>,
color_map=None, head_tags=None, band_tags=None)

Converts the rasters within this layer to GeoTiffs which are then converted to bytes. This is returned as a
RDD[(K, bytes)]. Where K is either ProjectedExtent or TemporalProjectedExtent.

Parameters

• storage_method (str or StorageMethod, optional) – How the segments within the
GeoTiffs should be arranged. Default is StorageMethod.STRIPED.

• rows_per_strip (int, optional) – How many rows should be in each strip seg-
ment of the GeoTiffs if storage_method is StorageMethod.STRIPED. If None,
then the strip size will default to a value that is 8K or less.

• tile_dimensions ((int, int), optional) – The length and width for each
tile segment of the GeoTiff if storage_method is StorageMethod.TILED. If
None then the default size is (256, 256).

• compression (str or Compression, optional) – How the data should be compressed.
Defaults to Compression.NO_COMPRESSION.

• color_space (str or ColorSpace, optional) – How the colors should be organized in
the GeoTiffs. Defaults to ColorSpace.BLACK_IS_ZERO.

• color_map (ColorMap, optional) – A ColorMap instance used to color the GeoTiffs
to a different gradient.

• head_tags (dict, optional) – A dict where each key and value is a str.

• band_tags (list, optional) – A list of dicts where each key and value is a
str.

• Note – For more information on the contents of the tags, see
www.gdal.org/gdal_datamodel.html

Returns RDD[(K, bytes)]

to_numpy_rdd()
Converts a RasterLayer to a numpy RDD.

2.12. geopyspark package 91

GeoPySpark Documentation, Release 0.4.1

Note: Depending on the size of the data stored within the RDD, this can be an exspensive operation and
should be used with caution.

Returns RDD

to_png_rdd(color_map)
Converts the rasters within this layer to PNGs which are then converted to bytes. This is returned as a
RDD[(K, bytes)].

Parameters color_map (ColorMap) – A ColorMap instance used to color the PNGs.

Returns RDD[(K, bytes)]

to_spatial_layer(target_time=None)
Converts a RasterLayer with a layout_type of LayoutType.SPACETIME to a RasterLayer
with a layout_type of LayoutType.SPATIAL.

Parameters target_time (datetime.datetime, optional) – The instance of interest. If
set, the resulting RasterLayer will only contain keys that contained the given instance. If
None, then all values within the layer will be kept.

Returns RasterLayer

Raises ValueError – If the layer already has a layout_type of LayoutType.
SPATIAL.

unpersist()
Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.

with_no_data(no_data_value)
Changes the NoData value of the layer with the new given value.

It is possible to specify a NoData value for layers with raw values. The resulting layer will be of the
same CellType but with a user defined NoData value. For example, if a layer has a CellType of
float32raw and a no_data_value of -10 is given, then the produced layer will have a CellType
of float32ud-10.0.

If the target layer has a bool CellType, then the no_data_value will be ignored and the re-
sult layer will be the same as the origin. In order to assign a NoData value to a bool layer, the
convert_data_type() method must be used.

Parameters no_data_value (int or float) – The new NoData value of the layer.

Returns RasterLayer

wrapped_rdds()
Returns the list of RDD-containing objects wrapped by this object. The default implementation assumes
that subclass contains a single RDD container, srdd, which implements the persist() and unpersist() meth-
ods.

class geopyspark.TiledRasterLayer(layer_type, srdd)
Wraps a RDD of tiled, GeoTrellis rasters.

Represents a RDD that contains (K, V). Where K is either SpatialKey or SpaceTimeKey depending on
the layer_type of the RDD, and V being a Tile.

The data held within the layer is tiled. This means that the rasters have been modified to fit a larger layout. For
more information, see tiled-raster-rdd.

Parameters

92 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

• layer_type (str or LayerType) – What the layer type of the geotiffs are. This is repre-
sented by either constants within LayerType or by a string.

• srdd (py4j.java_gateway.JavaObject) – The coresponding Scala class. This is
what allows TiledRasterLayer to access the various Scala methods.

pysc
pyspark.SparkContext – The SparkContext being used this session.

layer_type
LayerType – What the layer type of the geotiffs are.

srdd
py4j.java_gateway.JavaObject – The coresponding Scala class. This is what allows RasterLayer to
access the various Scala methods.

is_floating_point_layer
bool – Whether the data within the TiledRasterLayer is floating point or not.

layer_metadata
Metadata – The layer metadata associated with this layer.

zoom_level
int – The zoom level of the layer. Can be None.

aggregate_by_cell(operation)
Computes an aggregate summary for each cell of all of the values for each key.

The operation given is a local map algebra function that will be applied to all values that share the same
key. If there are multiple copies of the same key in the layer, then this method will reduce all instances
of the (K, Tile) pairs into a single element. This resulting (K, Tile)’s Tile will contain the
aggregate summaries of each cell of the reduced Tiles that had the same K.

Note: Not all Operations are supported. Only SUM, MIN, MAX, MEAN, VARIANCE, AND
STANDARD_DEVIATION can be used.

Note: If calculating VARIANCE or STANDARD_DEVIATION, then any K that is a single copy will have
a resulting Tile that is filled with NoData values. This is because the variance of a single element is
undefined.

Parameters operation (str or Operation) – The aggregate operation to be performed.

Returns TiledRasterLayer

bands(band)
Select a subsection of bands from the Tiles within the layer.

Note: There could be potential high performance cost if operations are performed between two sub-bands
of a large data set.

Note: Due to the natue of GeoPySpark’s backend, if selecting a band that is out of bounds then the error
returned will be a py4j.protocol.Py4JJavaError and not a normal Python error.

2.12. geopyspark package 93

GeoPySpark Documentation, Release 0.4.1

Parameters band (int or tuple or list or range) – The band(s) to be selected
from the Tiles. Can either be a single int, or a collection of ints.

Returns TiledRasterLayer with the selected bands.

cache()
Persist this RDD with the default storage level (C{MEMORY_ONLY}).

collect_keys()
Returns a list of all of the keys in the layer.

Note: This method should only be called on layers with a smaller number of keys, as a large number
could cause memory issues.

Returns [:class:`~geopyspark.geotrellis.ProjectedExtent`] or
[:class:`~geopyspark.geotrellis.TemporalProjectedExtent`]

convert_data_type(new_type, no_data_value=None)
Converts the underlying, raster values to a new CellType.

Parameters

• new_type (str or CellType) – The data type the cells should be to converted to.

• no_data_value (int or float, optional) – The value that should be marked
as NoData.

Returns TiledRasterLayer

Raises

• ValueError – If no_data_value is set and the new_type contains raw values.

• ValueError – If no_data_value is set and new_type is a boolean.

count()
Returns how many elements are within the wrapped RDD.

Returns The number of elements in the RDD.

Return type Int

filter_by_times(time_intervals)
Filters a SPACETIME layer by keeping only the values whose keys fall within a the given time interval(s).

Parameters time_intervals ([datetime.datetime]) – A list of the time intervals to
query. This list can have one or multiple elements. If just a single element, then only exact
matches with that given time will be kept. If there are multiple times given, then they are each
paired together so that they form ranges of time. In the case where there are an odd number
of elements, then the remaining time will be treated as a single query and not a range.

Note: If nothing intersects the given time_intervals, then the returned TiledRasterLayer will
be empty.

Returns TiledRasterLayer

94 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

focal(operation, neighborhood=None, param_1=None, param_2=None, param_3=None, parti-
tion_strategy=None)

Performs the given focal operation on the layers contained in the Layer.

Parameters

• operation (str or Operation) – The focal operation to be performed.

• neighborhood (str or Neighborhood, optional) – The type of neighborhood to use
in the focal operation. This can be represented by either an instance of Neighborhood,
or by a constant.

• param_1 (int or float, optional) – The first argument of neighborhood.

• param_2 (int or float, optional) – The second argument of the
neighborhood.

• param_3 (int or float, optional) – The third argument of the
neighborhood.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions
as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting
layer will have the Partioner specified in the strategy with the with same number of
partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Note: param only need to be set if neighborhood is not an instance of Neighborhood or if
neighborhood is None.

Any param that is not set will default to 0.0.

If neighborhood is None then operation must be Operation.ASPECT.

Returns TiledRasterLayer

Raises

• ValueError – If operation is not a known operation.

• ValueError – If neighborhood is not a known neighborhood.

• ValueError – If neighborhood was not set, and operation is not Operation.
ASPECT.

classmethod from_numpy_rdd(layer_type, numpy_rdd, metadata, zoom_level=None)
Create a TiledRasterLayer from a numpy RDD.

Parameters

• layer_type (str or LayerType) – What the layer type of the geotiffs are. This is
represented by either constants within LayerType or by a string.

2.12. geopyspark package 95

GeoPySpark Documentation, Release 0.4.1

• numpy_rdd (pyspark.RDD) – A PySpark RDD that contains tuples of either
SpatialKey or SpaceTimeKey and rasters that are represented by a numpy array.

• metadata (Metadata) – The Metadata of the TiledRasterLayer instance.

• zoom_level (int, optional) – The zoom_level the resulting TiledRasterLayer
should have. If None, then the returned layer’s zoom_level will be None.

Returns TiledRasterLayer

getNumPartitions()
Returns the number of partitions set for the wrapped RDD.

Returns The number of partitions.

Return type Int

get_class_histogram()
Creates a Histogram of integer values. Suitable for classification rasters with limited number values. If
only single band is present histogram is returned directly.

Returns Histogram or [Histogram]

get_histogram()
Creates a Histogram for each band in the layer. If only single band is present histogram is returned
directly.

Returns Histogram or [Histogram]

get_min_max()
Returns the maximum and minimum values of all of the rasters in the layer.

Returns (float, float)

get_partition_strategy()
Returns the partitioning strategy if the layer has one.

Returns HashPartitioner or SpatialPartitioner or
SpaceTimePartitionStrategy or None

get_point_values(points, resample_method=None)
Returns the values of the layer at given points.

Note: Only points that are contained within a layer will be sampled. This means that if a point lies on the
southern or eastern boundary of a cell, it will not be sampled.

Parameters

• or {k (points([shapely.geometry.Point]) – shapely.geometry.Point}): Ei-
ther a list of, or a dictionary whose values are shapely.geometry.Points. If a
dictionary, then the type of its keys does not matter. These points must be in the same
projection as the tiles within the layer.

• resample_method (str or ResampleMethod, optional) – The resampling method to
use before obtaining the point values. If not specified, then None is used.

Note: Not all ResampleMethods can be used to resample point values.
ResampleMethod.NEAREST_NEIGHBOR, ResampleMethod.BILINEAR`,

96 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

ResampleMethod.CUBIC_CONVOLUTION, and ResampleMethod.
CUBIC_SPLINE are the only ones that can be used.

Returns

The return type will vary depending on the type of points and the layer_type of the
sampled layer.

If points is a list and the layer_type is SPATIAL: [(shapely.geometry.Point,
[float])]

If points is a list and the layer_type is SPACETIME: [(shapely.geometry.Point,
[(datetime.datetime, [float])])]

If points is a dict and the layer_type is SPATIAL: {k: (shapely.geometry.Point,
[float])}

If points is a dict and the layer_type is SPACETIME: {k:
(shapely.geometry.Point, [(datetime.datetime, [float])])}

The shapely.geometry.Point in all of these returns is the original sampled point
given. The [float] are the sampled values, one for each band. If the layer_type
was SPACETIME, then the timestamp will also be included in the results represented by a
datetime.datetime instance. These times and their associated values will be given as
a list of tuples for each point.

Note: The sampled values will always be returned as floats. Regardless of the
cellType of the layer.

If points was given as a dict then the keys of that dictionary will be the keys in the
returned dict.

get_quantile_breaks(num_breaks)
Returns quantile breaks for this Layer.

Parameters num_breaks (int) – The number of breaks to return.

Returns [float]

get_quantile_breaks_exact_int(num_breaks)
Returns quantile breaks for this Layer. This version uses the FastMapHistogram, which counts exact
integer values. If your layer has too many values, this can cause memory errors.

Parameters num_breaks (int) – The number of breaks to return.

Returns [int]

histogram_series(geometries)

isEmpty()
Returns a bool that is True if the layer is empty and False if it is not.

Returns Are there elements within the layer

Return type bool

layer_type

local_max(value)
Determines the maximum value for each cell of each Tile in the layer.

2.12. geopyspark package 97

GeoPySpark Documentation, Release 0.4.1

This method takes a max_constant that is compared to each cell in the layer. If max_constant is
larger, then the resulting cell value will be that value. Otherwise, that cell will retain its original value.

Note: NoData values are handled such that taking the max between a normal value and NoData value
will always result in NoData.

Parameters value (int or float or TiledRasterLayer) – The constant value that will be
compared to each cell. If this is a TiledRasterLayer, then Tiles who share a key will
have each of their cell values compared.

Returns TiledRasterLayer

lookup(col, row)
Return the value(s) in the image of a particular SpatialKey (given by col and row).

Parameters

• col (int) – The SpatialKey column.

• row (int) – The SpatialKey row.

Returns [Tile]

Raises

• ValueError – If using lookup on a non LayerType.SPATIAL
TiledRasterLayer.

• IndexError – If col and row are not within the TiledRasterLayer’s bounds.

map_cells(func)
Maps over the cells of each Tile within the layer with a given function.

Note: This operation first needs to deserialize the wrapped RDD into Python and then serialize the RDD
back into a TiledRasterRDD once the mapping is done. Thus, it is advised to chain together operations
to reduce performance cost.

Parameters func (cells, nd => cells) – A function that takes two arguements:
cells and nd. Where cells is the numpy array and nd is the no_data_value of
the tile. It returns cells which are the new cells values of the tile represented as a numpy
array.

Returns TiledRasterLayer

map_tiles(func)
Maps over each Tile within the layer with a given function.

Note: This operation first needs to deserialize the wrapped RDD into Python and then serialize the RDD
back into a TiledRasterRDD once the mapping is done. Thus, it is advised to chain together operations
to reduce performance cost.

Parameters func (Tile => Tile) – A function that takes a Tile and returns a Tile.

Returns TiledRasterLayer

98 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

mask(geometries, partition_strategy=None, options=RasterizerOptions(includePartial=True, sample-
Type=’PixelIsPoint’))

Masks the TiledRasterLayer so that only values that intersect the geometries will be available.

Parameters

• geometries (shapely.geometry or [shapely.geometry] or
pyspark.RDD[shapely.geometry]) – Either a single, list, or Python RDD
of shapely geometry/ies to mask the layer.

Note: All geometries must be in the same CRS as the TileLayer.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting
layer will have the Partioner specified in the strategy with the with same number of
partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Note: This parameter will only be used if geometries is a pyspark.RDD.

• options (RasterizerOptions, optional) – During the mask operation, rasterization
occurs. These options will change the pixel rasterization behavior. Default behavior is to
include partial pixel intersection and to treat pixels as points.

Note: This parameter will only be used if geometries is a pyspark.RDD.

Returns TiledRasterLayer

max_series(geometries)

mean_series(geometries)

merge(partition_strategy=None)
Merges the Tile of each K together to produce a single Tile.

This method will reduce each value by its key within the layer to produce a single (K, V) for every K. In
order to achieve this, each Tile that shares a K is merged together to form a single Tile. This is done by
replacing one Tile’s cells with another’s. Not all cells, if any, may be replaced, however. The following
steps are taken to determine if a cell’s value should be replaced:

1. If the cell contains a NoData value, then it will be replaced.

2. If no NoData value is set, then a cell with a value of 0 will be replaced.

3. If neither of the above are true, then the cell retain its value.

Parameters

2.12. geopyspark package 99

GeoPySpark Documentation, Release 0.4.1

• num_partitions (int, optional) – The number of partitions that the resulting
layer should be partitioned with. If None, then the num_partitions will the number
of partitions the layer curretly has.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions
as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting
layer will have the Partioner specified in the strategy with the with same number of
partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Returns TiledRasterLayer

min_series(geometries)

normalize(new_min, new_max, old_min=None, old_max=None)
Finds the min value that is contained within the given geometry.

Note: If old_max - old_min <= 0 or new_max - new_min <= 0, then the normalization
will fail.

Parameters

• old_min (int or float, optional) – Old minimum. If not given, then the min-
imum value of this layer will be used.

• old_max (int or float, optional) – Old maximum. If not given, then the min-
imum value of this layer will be used.

• new_min (int or float) – New minimum to normalize to.

• new_max (int or float) – New maximum to normalize to.

Returns TiledRasterLayer

partitionBy(partition_strategy=None)
Repartitions the layer using the given partitioning strategy.

Parameters partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer
will have the Partioner specified in the strategy with the with same number of partitions
the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

100 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Returns TiledRasterLayer

persist(storageLevel=StorageLevel(False, True, False, False, 1))
Set this RDD’s storage level to persist its values across operations after the first time it is computed. This
can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no
storage level is specified defaults to (C{MEMORY_ONLY}).

polygonal_max(geometry, data_type)
Finds the max value for each band that is contained within the given geometry.

Parameters

• geometry (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon or bytes) – A Shapely Polygon or MultiPolygon that
represents the area where the summary should be computed; or a WKB representation of
the geometry.

• data_type (type) – The type of the values within the rasters. Can either be int or float.

Returns [int] or [float] depending on data_type.

Raises TypeError – If data_type is not an int or float.

polygonal_mean(geometry)
Finds the mean of all of the values for each band that are contained within the given geometry.

Parameters geometry (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon or bytes) – A Shapely Polygon or MultiPolygon that represents
the area where the summary should be computed; or a WKB representation of the geometry.

Returns [float]

polygonal_min(geometry, data_type)
Finds the min value for each band that is contained within the given geometry.

Parameters

• geometry (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon or bytes) – A Shapely Polygon or MultiPolygon that
represents the area where the summary should be computed; or a WKB representation of
the geometry.

• data_type (type) – The type of the values within the rasters. Can either be int or float.

Returns [int] or [float] depending on data_type.

Raises TypeError – If data_type is not an int or float.

polygonal_sum(geometry, data_type)
Finds the sum of all of the values in each band that are contained within the given geometry.

Parameters

• geometry (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon or bytes) – A Shapely Polygon or MultiPolygon that
represents the area where the summary should be computed; or a WKB representation of
the geometry.

• data_type (type) – The type of the values within the rasters. Can either be int or float.

Returns [int] or [float] depending on data_type.

Raises TypeError – If data_type is not an int or float.

2.12. geopyspark package 101

GeoPySpark Documentation, Release 0.4.1

pyramid(resample_method=<ResampleMethod.NEAREST_NEIGHBOR: ’NearestNeighbor’>, parti-
tion_strategy=None)

Creates a layer Pyramid where the resolution is halved per level.

Parameters

• resample_method (str or ResampleMethod, optional) – The resample
method to use when building the pyramid. Default is ResampleMethods.
NEAREST_NEIGHBOR.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions
as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting
layer will have the Partioner specified in the strategy with the with same number of
partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Returns Pyramid.

Raises ValueError – If this layer layout is not of GlobalLayout type.

pysc

reclassify(value_map, data_type, classification_strategy=<ClassificationStrategy.LESS_THAN_OR_EQUAL_TO:
’LessThanOrEqualTo’>, replace_nodata_with=None, fallback_value=None,
strict=False)

Changes the cell values of a raster based on how the data is broken up in the given value_map.

Parameters

• value_map (dict) – A dict whose keys represent values where a break should occur
and its values are the new value the cells within the break should become.

• data_type (type) – The type of the values within the rasters. Can either be int or float.

• classification_strategy (str or ClassificationStrategy , optional)
– How the cells should be classified along the breaks. If unspecified, then
ClassificationStrategy.LESS_THAN_OR_EQUAL_TO will be used.

• replace_nodata_with (int or float, optional) – When remapping val-
ues, NoData values must be treated separately. If NoData values are intended to be
replaced during the reclassify, this variable should be set to the intended value. If unspec-
ified, NoData values will be preserved.

Note: Specifying replace_nodata_with will change the value of given cells, but
the NoData value of the layer will remain unchanged.

• fallback_value (int or float, optional) – Represents the
value that should be used when a cell’s value does not fall within the
classification_strategy. Default is to use the layer’s NoData value.

102 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

• strict (bool, optional) – Determines whether or not an error should be thrown
if a cell’s value does not fall within the classification_strategy. Default is,
False.

Returns TiledRasterLayer

repartition(num_partitions=None)
Repartitions the layer to have a different number of partitions.

Parameters num_partitions (int, optional) – Desired number of partitions. Default
is, None .If None, then the exisiting number of partitions will be used.

Returns TiledRasterLayer

reproject(target_crs, resample_method=<ResampleMethod.NEAREST_NEIGHBOR: ’Nearest-
Neighbor’>)

Reproject rasters to target_crs. The reproject does not sample past tile boundary.

Parameters

• target_crs (str or int) – Target CRS of reprojection. Either EPSG code, well-
known name, or a PROJ.4 string.

• resample_method (str or ResampleMethod, optional) – The resample method
to use for the reprojection. If none is specified, then ResampleMethods.
NEAREST_NEIGHBOR is used.

Returns TiledRasterLayer

save_stitched(path, crop_bounds=None, crop_dimensions=None)
Stitch all of the rasters within the Layer into one raster and then saves it to a given path.

Parameters

• path (str) – The path of the geotiff to save. The path must be on the local file system.

• crop_bounds (Extent, optional) – The sub Extent with which to crop the raster
before saving. If None, then the whole raster will be saved.

• crop_dimensions (tuple(int) or list(int), optional) – cols and
rows of the image to save represented as either a tuple or list. If None then all cols
and rows of the raster will be save.

Note: This can only be used on LayerType.SPATIAL TiledRasterLayers.

Note: If crop_dimensions is set then crop_bounds must also be set.

slope(zfactor_calculator)
Performs the Slope, focal operation on the first band of each Tile in the Layer.

The Slope operation will be carried out in a SQUARE neighborhood with with an extent of 1. A
zfactor will be derived from the zfactor_calculator for each Tile in the Layer. The resulting
Layer will have a cell_type of FLOAT64 regardless of the input Layer’s cell_type; as well as have
a single band, that represents the calculated slope.

Parameters zfactor_calculator (py4j.JavaObject) – A JavaObject that rep-
resents the Scala ZFactorCalculator class. This can be created using either the
zfactor_lat_lng_calculator() or the zfactor_calculator() methods.

Returns TiledRasterLayer

2.12. geopyspark package 103

GeoPySpark Documentation, Release 0.4.1

srdd

star_series(geometries, fn)

stitch()
Stitch all of the rasters within the Layer into one raster.

Note: This can only be used on LayerType.SPATIAL TiledRasterLayers.

Returns Tile

sum_series(geometries)

tile_to_layout(layout, target_crs=None, resample_method=<ResampleMethod.NEAREST_NEIGHBOR:
’NearestNeighbor’>, partition_strategy=None)

Cut tiles to a given layout and merge overlapping tiles. This will produce unique keys.

Parameters

• layout (LayoutDefinition or Metadata or TiledRasterLayer or
GlobalLayout or LocalLayout) – Target raster layout for the tiling operation.

• target_crs (str or int, optional) – Target CRS of reprojection. Either
EPSG code, well-known name, or a PROJ.4 string. If None, no reproject will be per-
fomed.

• resample_method (str or ResampleMethod, optional) – The resample method
to use for the reprojection. If none is specified, then ResampleMethods.
NEAREST_NEIGHBOR is used.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions
as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting
layer will have the Partioner specified in the strategy with the with same number of
partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Returns TiledRasterLayer

to_geotiff_rdd(storage_method=<StorageMethod.STRIPED: ’Striped’>, rows_per_strip=None,
tile_dimensions=(256, 256), compression=<Compression.NO_COMPRESSION:
’NoCompression’>, color_space=<ColorSpace.BLACK_IS_ZERO: 1>,
color_map=None, head_tags=None, band_tags=None)

Converts the rasters within this layer to GeoTiffs which are then converted to bytes. This is returned as a
RDD[(K, bytes)]. Where K is either SpatialKey or SpaceTimeKey.

Parameters

• storage_method (str or StorageMethod, optional) – How the segments within the
GeoTiffs should be arranged. Default is StorageMethod.STRIPED.

104 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

• rows_per_strip (int, optional) – How many rows should be in each strip seg-
ment of the GeoTiffs if storage_method is StorageMethod.STRIPED. If None,
then the strip size will default to a value that is 8K or less.

• tile_dimensions ((int, int), optional) – The length and width for each
tile segment of the GeoTiff if storage_method is StorageMethod.TILED. If
None then the default size is (256, 256).

• compression (str or Compression, optional) – How the data should be compressed.
Defaults to Compression.NO_COMPRESSION.

• color_space (str or ColorSpace, optional) – How the colors should be organized in
the GeoTiffs. Defaults to ColorSpace.BLACK_IS_ZERO.

• color_map (ColorMap, optional) – A ColorMap instance used to color the GeoTiffs
to a different gradient.

• head_tags (dict, optional) – A dict where each key and value is a str.

• band_tags (list, optional) – A list of dicts where each key and value is a
str.

• Note – For more information on the contents of the tags, see
www.gdal.org/gdal_datamodel.html

Returns RDD[(K, bytes)]

to_numpy_rdd()
Converts a TiledRasterLayer to a numpy RDD.

Note: Depending on the size of the data stored within the RDD, this can be an exspensive operation and
should be used with caution.

Returns RDD

to_png_rdd(color_map)
Converts the rasters within this layer to PNGs which are then converted to bytes. This is returned as a
RDD[(K, bytes)].

Parameters color_map (ColorMap) – A ColorMap instance used to color the PNGs.

Returns RDD[(K, bytes)]

to_spatial_layer(target_time=None)
Converts a TiledRasterLayer with a layout_type of LayoutType.SPACETIME to a
TiledRasterLayer with a layout_type of LayoutType.SPATIAL.

Parameters target_time (datetime.datetime, optional) – The instance of interest. If
set, the resulting TiledRasterLayer will only contain keys that contained the given
instance. If None, then all values within the layer will be kept.

Returns TiledRasterLayer

Raises ValueError – If the layer already has a layout_type of LayoutType.
SPATIAL.

tobler()
Generates a Tobler walking speed layer from an elevation layer.

2.12. geopyspark package 105

GeoPySpark Documentation, Release 0.4.1

Note: This method has a known issue where the Tobler calculation is direction agnostic. Thus, all slopes
are assumed to be uphill. This can result it incorrect results. A fix is currently being worked on.

Returns TiledRasterLayer

unpersist()
Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.

with_no_data(no_data_value)
Changes the NoData value of the layer with the new given value.

It is possible to specify a NoData value for layers with raw values. The resulting layer will be of the
same CellType but with a user defined NoData value. For example, if a layer has a CellType of
float32raw and a no_data_value of -10 is given, then the produced layer will have a CellType
of float32ud-10.0.

If the target layer has a bool CellType, then the no_data_value will be ignored and the re-
sult layer will be the same as the origin. In order to assign a NoData value to a bool layer, the
convert_data_type() method must be used.

Parameters no_data_value (int or float) – The new NoData value of the layer.

Returns TiledRasterLayer

wrapped_rdds()
Returns the list of RDD-containing objects wrapped by this object. The default implementation assumes
that subclass contains a single RDD container, srdd, which implements the persist() and unpersist() meth-
ods.

class geopyspark.Pyramid(levels)
Contains a list of TiledRasterLayers that make up a tile pyramid. Each layer represents a level within the
pyramid. This class is used when creating a tile server.

Map algebra can performed on instances of this class.

Parameters levels (list or dict) – A list of TiledRasterLayers or a dict of
TiledRasterLayers where the value is the layer itself and the key is its given zoom level.

pysc
pyspark.SparkContext – The SparkContext being used this session.

layer_type (class
~geopyspark.geotrellis.constants.LayerType): What the layer type of the geotiffs are.

levels
dict – A dict of TiledRasterLayers where the value is the layer itself and the key is its given zoom
level.

max_zoom
int – The highest zoom level of the pyramid.

is_cached
bool – Signals whether or not the internal RDDs are cached. Default is False.

histogram
Histogram – The Histogram that represents the layer with the max zoomw. Will not be calculated
unless the get_histogram() method is used. Otherwise, its value is None.

Raises TypeError – If levels is neither a list or dict.

106 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

cache()
Persist this RDD with the default storage level (C{MEMORY_ONLY}).

count()
Returns how many elements are within the wrapped RDD.

Returns The number of elements in the RDD.

Return type Int

getNumPartitions()
Returns the number of partitions set for the wrapped RDD.

Returns The number of partitions.

Return type Int

get_histogram()
Calculates the Histogram for the layer with the max zoom.

Returns Histogram

get_partition_strategy()
Returns the partitioning strategy if the layer has one.

Returns HashPartitioner or SpatialPartitioner or
SpaceTimePartitionStrategy or None

histogram

isEmpty()
Returns a bool that is True if the layer is empty and False if it is not.

Returns Are there elements within the layer

Return type bool

is_cached

layer_type

levels

max_zoom

persist(storageLevel=StorageLevel(False, True, False, False, 1))
Set this RDD’s storage level to persist its values across operations after the first time it is computed. This
can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no
storage level is specified defaults to (C{MEMORY_ONLY}).

pysc

unpersist()
Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.

wrapped_rdds()
Returns a list of the wrapped, Scala RDDs within each layer of the pyramid.

Returns [org.apache.spark.rdd.RDD]

class geopyspark.Square(extent)

class geopyspark.Circle(radius)
A circle neighborhood.

Parameters radius (int or float) – The radius of the circle that determines which cells fall
within the bounding box.

2.12. geopyspark package 107

GeoPySpark Documentation, Release 0.4.1

radius
int or float – The radius of the circle that determines which cells fall within the bounding box.

param_1
float – Same as radius.

param_2
float – Unused param for Circle. Is 0.0.

param_3
float – Unused param for Circle. Is 0.0.

name
str – The name of the neighborhood which is, “circle”.

Note: Cells that lie exactly on the radius of the circle are apart of the neighborhood.

class geopyspark.Wedge(radius, start_angle, end_angle)
A wedge neighborhood.

Parameters

• radius (int or float) – The radius of the wedge.

• start_angle (int or float) – The starting angle of the wedge in degrees.

• end_angle (int or float) – The ending angle of the wedge in degrees.

radius
int or float – The radius of the wedge.

start_angle
int or float – The starting angle of the wedge in degrees.

end_angle
int or float – The ending angle of the wedge in degrees.

param_1
float – Same as radius.

param_2
float – Same as start_angle.

param_3
float – Same as end_angle.

name
str – The name of the neighborhood which is, “wedge”.

class geopyspark.Nesw(extent)
A neighborhood that includes a column and row intersection for the focus.

Parameters extent (int or float) – The extent of this neighborhood. This represents the
how many cells past the focus the bounding box goes.

extent
int or float – The extent of this neighborhood. This represents the how many cells past the focus the
bounding box goes.

param_1
float – Same as extent.

108 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

param_2
float – Unused param for Nesw. Is 0.0.

param_3
float – Unused param for Nesw. Is 0.0.

name
str – The name of the neighborhood which is, “nesw”.

class geopyspark.Annulus(inner_radius, outer_radius)
An Annulus neighborhood.

Parameters

• inner_radius (int or float) – The radius of the inner circle.

• outer_radius (int or float) – The radius of the outer circle.

inner_radius
int or float – The radius of the inner circle.

outer_radius
int or float – The radius of the outer circle.

param_1
float – Same as inner_radius.

param_2
float – Same as outer_radius.

param_3
float – Unused param for Annulus. Is 0.0.

name
str – The name of the neighborhood which is, “annulus”.

geopyspark.rasterize(geoms, crs, zoom, fill_value, cell_type=<CellType.FLOAT64: ’float64’>, op-
tions=None, partition_strategy=None)

Rasterizes a Shapely geometries.

Parameters

• geoms ([shapely.geometry] or (shapely.geometry) or pyspark.
RDD[shapely.geometry]) – Either a list, tuple, or a Python RDD of shapely
geometries to rasterize.

• crs (str or int) – The CRS of the input geometry.

• zoom (int) – The zoom level of the output raster.

• fill_value (int or float) – Value to burn into pixels intersectiong geometry

• cell_type (str or CellType) – Which data type the cells should be when created. De-
faults to CellType.FLOAT64.

• options (RasterizerOptions, optional) – Pixel intersection options.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy, optional) – Sets the Partitioner for the
resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will have the default Partitioner and a number of pari-
tions that was determined by the method.

2.12. geopyspark package 109

GeoPySpark Documentation, Release 0.4.1

If partition_strategy is set but has no num_partitions, then the resulting layer
will have the Partioner specified in the strategy with the with same number of partitions
the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Returns TiledRasterLayer

geopyspark.rasterize_features(features, crs, zoom, cell_type=<CellType.FLOAT64: ’float64’>,
options=None, zindex_cell_type=<CellType.INT8: ’int8’>, parti-
tion_strategy=None)

Rasterizes a collection of Features.

Parameters

• features (pyspark.RDD[Feature]) – A Python RDD that contains Features.

Note: The properties of each Feature must be an instance of CellValue.

• crs (str or int) – The CRS of the input geometry.

• zoom (int) – The zoom level of the output raster.

Note: Not all rasterized Features may be present in the resulting layer if the zoom is not
high enough.

• cell_type (str or CellType) – Which data type the cells should be when created. De-
faults to CellType.FLOAT64.

• options (RasterizerOptions, optional) – Pixel intersection options.

• zindex_cell_type (str or CellType) – Which data type the Z-Index cells are.
Defaults to CellType.INT8.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy, optional) – Sets the Partitioner for the
resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will have the default Partitioner and a number of pari-
tions that was determined by the method.

If partition_strategy is set but has no num_partitions, then the resulting layer
will have the Partioner specified in the strategy with the with same number of partitions
the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Returns TiledRasterLayer

class geopyspark.TileRender(render_function)
A Python implementation of the Scala geopyspark.geotrellis.tms.TileRender interface. Permits a callback from
Scala to Python to allow for custom rendering functions.

Parameters render_function (Tile => PIL.Image.Image) – A function to convert
geopyspark.geotrellis.Tile to a PIL Image.

render_function
Tile => PIL.Image.Image – A function to convert geopyspark.geotrellis.Tile to a PIL Image.

110 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

class Java

implements = ['geopyspark.geotrellis.tms.TileRender']

renderEncoded(scala_array)
A function to convert an array to an image.

Parameters scala_array – A linear array of bytes representing the protobuf-encoded con-
tents of a tile

Returns bytes representing an image

requiresEncoding()

class geopyspark.TMS(server)
Provides a TMS server for raster data.

In order to display raster data on a variety of different map interfaces (e.g., leaflet maps, geojson.io, GeoNote-
book, and others), we provide the TMS class.

Parameters server (JavaObject) – The Java TMSServer instance

pysc
pyspark.SparkContext – The SparkContext being used this session.

server
JavaObject – The Java TMSServer instance

host
str – The IP address of the host, if bound, else None

port
int – The port number of the TMS server, if bound, else None

url_pattern
string – The URI pattern for the current TMS service, with {z}, {x}, {y} tokens. Can be copied directly
to services such as geojson.io.

bind(host=None, requested_port=None)
Starts up a TMS server.

Parameters

• host (str, optional) – The target host. Typically “localhost”, “127.0.0.1”, or
“0.0.0.0”. The latter will make the TMS service accessible from the world. If omitted,
defaults to localhost.

• requested_port (optional, int) – A port number to bind the service to. If omit-
ted, use a random available port.

classmethod build(source, display, allow_overzooming=True)
Builds a TMS server from one or more layers.

This function takes a SparkContext, a source or list of sources, and a display method and creates a TMS
server to display the desired content. The display method is supplied as a ColorMap (only available when
there is a single source), or a callable object which takes either a single tile input (when there is a single
source) or a list of tiles (for multiple sources) and returns the bytes representing an image file for that tile.

Parameters

• source (tuple or orlist or Pyramid) – The tile sources to render. Tuple inputs are (str,
str) pairs where the first component is the URI of a catalog and the second is the layer
name. A list input may be any combination of tuples and Pyramids.

2.12. geopyspark package 111

GeoPySpark Documentation, Release 0.4.1

• display (ColorMap, callable) – Method for mapping tiles to images. ColorMap
may only be applied to single input source. Callable will take a single numpy array for
a single source, or a list of numpy arrays for multiple sources. In the case of multiple
inputs, resampling may be required if the tile sources have different tile sizes. Returns
bytes representing the resulting image.

• allow_overzooming (bool) – If set, viewing at zoom levels above the highest avail-
able zoom level will produce tiles that are resampled from the highest zoom level present
in the data set.

host
Returns the IP string of the server’s host if bound, else None.

Returns (str)

port
Returns the port number for the current TMS server if bound, else None.

Returns (int)

set_handshake(handshake)

unbind()
Shuts down the TMS service, freeing the assigned port.

url_pattern
Returns the URI for the tiles served by the present server. Contains {z}, {x}, and {y} tokens to be substi-
tuted for the desired zoom and x/y tile position.

Returns (str)

geopyspark.union(layers)
Unions togther two or more RasterLayers or TiledRasterLayers.

All layers must have the same layer_type. If the layers are TiledRasterLayers, then all of the layers
must also have the same TileLayout and CRS.

Note: If the layers to be unioned share one or more keys, then the resulting layer will contain duplicates of that
key. One copy for each instance of the key.

Parameters layers ([RasterLayer] or [TiledRasterLayer] or (RasterLayer)
or (TiledRasterLayer)) – A colection of two or more RasterLayers or
TiledRasterLayers layers to be unioned together.

Returns RasterLayer or TiledRasterLayer

geopyspark.combine_bands(layers)
Combines the bands of values that share the same key in two or more TiledRasterLayers.

This method will concat the bands of two or more values with the same key. For example, layer a has values
that have 2 bands and layer b has values with 1 band. When combine_bands is used on both of these
layers, then the resulting layer will have values with 3 bands, 2 from layer a and 1 from layer b.

Note: All layers must have the same layer_type. If the layers are TiledRasterLayers, then all of the
layers must also have the same TileLayout and CRS.

112 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Parameters layers ([RasterLayer] or [TiledRasterLayer] or (RasterLayer)
or (TiledRasterLayer)) – A colection of two or more RasterLayers or
TiledRasterLayers. The order of the layers determines the order in which the bands
are concatenated. With the bands being ordered based on the position of their respective layer.

For example, the first layer in layers is layer a which contains 2 bands and the second
layer is layer b whose values have 1 band. The resulting layer will have values with 3 bands:
the first 2 are from layer a and the third from layer b. If the positions of layer a and
layer b are reversed, then the resulting values’ first band will be from layer b and the last
2 will be from layer a.

Returns RasterLayer or TiledRasterLayer

class geopyspark.Feature
Represents a geometry that is derived from an OSM Element with that Element’s associated metadata.

Parameters

• geometry (shapely.geometry) – The geometry of the feature that is represented as
a shapely.geometry. This geometry is derived from an OSM Element.

• properties (Properties or CellValue) – The metadata associated with the OSM
Element. Can be represented as either an instance of Properties or a CellValue.

geometry
shapely.geometry – The geometry of the feature that is represented as a shapely.geometry. This
geometry is derived from an OSM Element.

properties
Properties or CellValue – The metadata associated with the OSM Element. Can be represented as
either an instance of Properties or a CellValue.

count(value)→ integer – return number of occurrences of value

geometry
Alias for field number 0

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

properties
Alias for field number 1

class geopyspark.Properties
Represents the metadata of an OSM Element.

This object is one of two types that can be used to represent the properties of a Feature.

Parameters

• element_id (int) – The id of the OSM Element.

• user (str) – The display name of the last user who modified/created the OSM Element.

• uid (int) – The numeric id of the last user who modified the OSM Element.

• changeset (int) – The OSM changeset number in which the OSM Element was
created/modified.

• version (int) – The edit version of the OSM Element.

• minor_version (int) – Represents minor changes between versions of an OSM Ele-
ment.

2.12. geopyspark package 113

GeoPySpark Documentation, Release 0.4.1

• timestamp (datetime.datetime) – The time of the last modification to the OSM
Element.

• visible (bool) – Represents whether or not the OSM Element is deleted or not in the
database.

• tags (dict) – A dict of strs that represents the given features of the OSM Element.

element_id
int – The id of the OSM Element.

user
str – The display name of the last user who modified/created the OSM Element.

uid
int – The numeric id of the last user who modified the OSM Element.

changeset
int – The OSM changeset number in which the OSM Element was created/modified.

version
int – The edit version of the OSM Element.

minor_version
int – Represents minor changes between versions of an OSM Element.

timestamp
datetime.datetime – The time of the last modification to the OSM Element.

visible
bool – Represents whether or not the OSM Element is deleted or not in the database.

tags
dict – A dict of strs that represents the given features of the OSM Element.

changeset
Alias for field number 3

count(value)→ integer – return number of occurrences of value

element_id
Alias for field number 0

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

minor_version
Alias for field number 5

tags
Alias for field number 8

timestamp
Alias for field number 6

uid
Alias for field number 2

user
Alias for field number 1

version
Alias for field number 4

114 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

visible
Alias for field number 7

class geopyspark.CellValue
Represents the value and zindex of a geometry.

This object is one of two types that can be used to represent the properties of a Feature.

Parameters

• value (int or float) – The value of all cells that intersects the associated geometry.

• zindex (int) – The Z-Index of each cell that intersects the associated geometry.
Z-Index determines which value a cell should be if multiple geometries intersect it. A
high Z-Index will always be in front of a Z-Index of a lower value.

value
int or float – The value of all cells that intersects the associated geometry.

zindex
int – The Z-Index of each cell that intersects the associated geometry. Z-Index determines which
value a cell should be if multiple geometries intersect it. A high Z-Index will always be in front of a
Z-Index of a lower value.

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

value
Alias for field number 0

zindex
Alias for field number 1

2.13 geopyspark.geotrellis package

class geopyspark.geotrellis.Tile
Represents a raster in GeoPySpark.

Note: All rasters in GeoPySpark are represented as having multiple bands, even if the original raster just
contained one.

Parameters

• cells (nd.array) – The raster data itself. It is contained within a NumPy array.

• data_type (str) – The data type of the values within data if they were in Scala.

• no_data_value – The value that represents no data value in the raster. This can be
represented by a variety of types depending on the value type of the raster.

cells
nd.array – The raster data itself. It is contained within a NumPy array.

data_type
str – The data type of the values within data if they were in Scala.

2.13. geopyspark.geotrellis package 115

GeoPySpark Documentation, Release 0.4.1

no_data_value
The value that represents no data value in the raster. This can be represented by a variety of types depending
on the value type of the raster.

cell_type
Alias for field number 1

cells
Alias for field number 0

count(value)→ integer – return number of occurrences of value

static dtype_to_cell_type(dtype)
Converts a np.dtype to the corresponding GeoPySpark cell_type.

Note: bool, complex64, complex128, and complex256, are currently not supported np.
dtypes.

Parameters dtype (np.dtype) – The dtype of the numpy array.

Returns str. The GeoPySpark cell_type equivalent of the dtype.

Raises TypeError – If the given dtype is not a supported data type.

classmethod from_numpy_array(numpy_array, no_data_value=None)
Creates an instance of Tile from a numpy array.

Parameters

• numpy_array (np.array) – The numpy array to be used to represent the cell values
of the Tile.

Note: GeoPySpark does not support arrays with the following data types: bool,
complex64, complex128, and complex256.

• no_data_value (optional) – The value that represents no data value in the raster.
This can be represented by a variety of types depending on the value type of the raster. If
not given, then the value will be None.

Returns Tile

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

no_data_value
Alias for field number 2

class geopyspark.geotrellis.Extent
The “bounding box” or geographic region of an area on Earth a raster represents.

Parameters

• xmin (float) – The minimum x coordinate.

• ymin (float) – The minimum y coordinate.

• xmax (float) – The maximum x coordinate.

• ymax (float) – The maximum y coordinate.

116 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

xmin
float – The minimum x coordinate.

ymin
float – The minimum y coordinate.

xmax
float – The maximum x coordinate.

ymax
float – The maximum y coordinate.

count(value)→ integer – return number of occurrences of value

classmethod from_polygon(polygon)
Creates a new instance of Extent from a Shapely Polygon.

The new Extent will contain the min and max coordinates of the Polygon; regardless of the Polygon’s
shape.

Parameters polygon (shapely.geometry.Polygon) – A Shapely Polygon.

Returns Extent

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

to_polygon
Converts this instance to a Shapely Polygon.

The resulting Polygon will be in the shape of a box.

Returns shapely.geometry.Polygon

xmax
Alias for field number 2

xmin
Alias for field number 0

ymax
Alias for field number 3

ymin
Alias for field number 1

class geopyspark.geotrellis.ProjectedExtent
Describes both the area on Earth a raster represents in addition to its CRS.

Parameters

• extent (Extent) – The area the raster represents.

• epsg (int, optional) – The EPSG code of the CRS.

• proj4 (str, optional) – The Proj.4 string representation of the CRS.

extent
Extent – The area the raster represents.

epsg
int, optional – The EPSG code of the CRS.

proj4
str, optional – The Proj.4 string representation of the CRS.

2.13. geopyspark.geotrellis package 117

GeoPySpark Documentation, Release 0.4.1

Note: Either epsg or proj4 must be defined.

count(value)→ integer – return number of occurrences of value

epsg
Alias for field number 1

extent
Alias for field number 0

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

proj4
Alias for field number 2

class geopyspark.geotrellis.TemporalProjectedExtent
Describes the area on Earth the raster represents, its CRS, and the time the data was collected.

Parameters

• extent (Extent) – The area the raster represents.

• instant (datetime.datetime) – The time stamp of the raster.

• epsg (int, optional) – The EPSG code of the CRS.

• proj4 (str, optional) – The Proj.4 string representation of the CRS.

extent
Extent – The area the raster represents.

instant
datetime.datetime – The time stamp of the raster.

epsg
int, optional – The EPSG code of the CRS.

proj4
str, optional – The Proj.4 string representation of the CRS.

Note: Either epsg or proj4 must be defined.

count(value)→ integer – return number of occurrences of value

epsg
Alias for field number 2

extent
Alias for field number 0

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

instant
Alias for field number 1

proj4
Alias for field number 3

118 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

class geopyspark.geotrellis.GlobalLayout
TileLayout type that spans global CRS extent.

When passed in place of LayoutDefinition it signifies that a LayoutDefinition instance should be constructed
such that it fits the global CRS extent. The cell resolution of resulting layout will be one of resolutions implied
by power of 2 pyramid for that CRS. Tiling to this layout will likely result in either up-sampling or down-
sampling the source raster.

Parameters

• tile_size (int) – The number of columns and row pixels in each tile.

• zoom (int, optional) – Override the zoom level in power of 2 pyramid.

• threshold (float, optional) – The percentage difference between a cell size and
a zoom level and the resolution difference between that zoom level and the next that is
tolerated to snap to the lower-resolution zoom level. For example, if this paramter is 0.1, that
means we’re willing to downsample rasters with a higher resolution in order to fit them to
some zoom level Z, if the difference is resolution is less than or equal to 10% the difference
between the resolutions of zoom level Z and zoom level Z+1.

tile_size
int – The number of columns and row pixels in each tile.

zoom
int – The desired zoom level of the layout.

threshold
float, optional – The percentage difference between a cell size and a zoom level and the resolution differ-
ence between that zoom level and the next that is tolerated to snap to the lower-resolution zoom level.

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

threshold
Alias for field number 2

tile_size
Alias for field number 0

zoom
Alias for field number 1

class geopyspark.geotrellis.LocalLayout
TileLayout type that snaps the layer extent.

When passed in place of LayoutDefinition it signifies that a LayoutDefinition instances should be constructed
over the envelope of the layer pixels with given tile size. Resulting TileLayout will match the cell resolution of
the source rasters.

Parameters

• tile_size (int, optional) – The number of columns and row pixels in each tile. If
this is None, then the sizes of each tile will be set using tile_cols and tile_rows.

• tile_cols (int, optional) – The number of column pixels in each tile. This super-
sedes tile_size. Meaning if this and tile_size are set, then this will be used for the
number of colunn pixles. If None, then the number of column pixels will default to 256.

2.13. geopyspark.geotrellis package 119

GeoPySpark Documentation, Release 0.4.1

• tile_rows (int, optional) – The number of rows pixels in each tile. This super-
sedes tile_size. Meaning if this and tile_size are set, then this will be used for the
number of row pixles. If None, then the number of row pixels will default to 256.

tile_cols
int – The number of column pixels in each tile

tile_rows
int – The number of rows pixels in each tile. This supersedes

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

tile_cols
Alias for field number 0

tile_rows
Alias for field number 1

class geopyspark.geotrellis.LocalLayout
TileLayout type that snaps the layer extent.

When passed in place of LayoutDefinition it signifies that a LayoutDefinition instances should be constructed
over the envelope of the layer pixels with given tile size. Resulting TileLayout will match the cell resolution of
the source rasters.

Parameters

• tile_size (int, optional) – The number of columns and row pixels in each tile. If
this is None, then the sizes of each tile will be set using tile_cols and tile_rows.

• tile_cols (int, optional) – The number of column pixels in each tile. This super-
sedes tile_size. Meaning if this and tile_size are set, then this will be used for the
number of colunn pixles. If None, then the number of column pixels will default to 256.

• tile_rows (int, optional) – The number of rows pixels in each tile. This super-
sedes tile_size. Meaning if this and tile_size are set, then this will be used for the
number of row pixles. If None, then the number of row pixels will default to 256.

tile_cols
int – The number of column pixels in each tile

tile_rows
int – The number of rows pixels in each tile. This supersedes

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

tile_cols
Alias for field number 0

tile_rows
Alias for field number 1

class geopyspark.geotrellis.TileLayout
Describes the grid in which the rasters within a Layer should be laid out.

Parameters

• layoutCols (int) – The number of columns of rasters that runs east to west.

120 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

• layoutRows (int) – The number of rows of rasters that runs north to south.

• tileCols (int) – The number of columns of pixels in each raster that runs east to west.

• tileRows (int) – The number of rows of pixels in each raster that runs north to south.

layoutCols
int – The number of columns of rasters that runs east to west.

layoutRows
int – The number of rows of rasters that runs north to south.

tileCols
int – The number of columns of pixels in each raster that runs east to west.

tileRows
int – The number of rows of pixels in each raster that runs north to south.

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

layoutCols
Alias for field number 0

layoutRows
Alias for field number 1

tileCols
Alias for field number 2

tileRows
Alias for field number 3

class geopyspark.geotrellis.LayoutDefinition
Describes the layout of the rasters within a Layer and how they are projected.

Parameters

• extent (Extent) – The Extent of the layout.

• tileLayout (TileLayout) – The TileLayout of how the rasters within the Layer.

extent
Extent – The Extent of the layout.

tileLayout
TileLayout – The TileLayout of how the rasters within the Layer.

count(value)→ integer – return number of occurrences of value

extent
Alias for field number 0

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

tileLayout
Alias for field number 1

class geopyspark.geotrellis.SpatialKey
Represents the position of a raster within a grid. This grid is a 2D plane where raster positions are represented
by a pair of coordinates.

Parameters

2.13. geopyspark.geotrellis package 121

GeoPySpark Documentation, Release 0.4.1

• col (int) – The column of the grid, the numbers run east to west.

• row (int) – The row of the grid, the numbers run north to south.

col
int – The column of the grid, the numbers run east to west.

row
int – The row of the grid, the numbers run north to south.

col
Alias for field number 0

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

row
Alias for field number 1

class geopyspark.geotrellis.SpaceTimeKey
Represents the position of a raster within a grid. This grid is a 3D plane where raster positions are represented
by a pair of coordinates as well as a z value that represents time.

Parameters

• col (int) – The column of the grid, the numbers run east to west.

• row (int) – The row of the grid, the numbers run north to south.

• instant (datetime.datetime) – The time stamp of the raster.

col
int – The column of the grid, the numbers run east to west.

row
int – The row of the grid, the numbers run north to south.

instant
datetime.datetime – The time stamp of the raster.

col
Alias for field number 0

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

instant
Alias for field number 2

row
Alias for field number 1

class geopyspark.geotrellis.RasterizerOptions
Represents options available to geometry rasterizer

Parameters

• includePartial (bool, optional) – Include partial pixel intersection (default:
True)

• sampleType (str, optional) – ‘PixelIsArea’ or ‘PixelIsPoint’ (default: ‘PixelIs-
Point’)

122 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

includePartial
bool – Include partial pixel intersection.

sampleType
str – How the sampling should be performed during rasterization.

count(value)→ integer – return number of occurrences of value

includePartial
Alias for field number 0

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

sampleType
Alias for field number 1

class geopyspark.geotrellis.Bounds
Represents the grid that covers the area of the rasters in a Layer on a grid.

Parameters

• minKey (SpatialKey or SpaceTimeKey) – The smallest SpatialKey or
SpaceTimeKey.

• minKey – The largest SpatialKey or SpaceTimeKey.

minKey
SpatialKey or SpaceTimeKey – The smallest SpatialKey or SpaceTimeKey.

minKey
SpatialKey or SpaceTimeKey – The largest SpatialKey or SpaceTimeKey.

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

maxKey
Alias for field number 1

minKey
Alias for field number 0

class geopyspark.geotrellis.Metadata(bounds, crs, cell_type, extent, layout_definition)
Information of the values within a RasterLayer or TiledRasterLayer. This data pertains to the layout
and other attributes of the data within the classes.

Parameters

• bounds (Bounds) – The Bounds of the values in the class.

• crs (str or int) – The CRS of the data. Can either be the EPSG code, well-known
name, or a PROJ.4 projection string.

• cell_type (str or CellType) – The data type of the cells of the rasters.

• extent (Extent) – The Extent that covers the all of the rasters.

• layout_definition (LayoutDefinition) – The LayoutDefinition of all
rasters.

bounds
Bounds – The Bounds of the values in the class.

2.13. geopyspark.geotrellis package 123

GeoPySpark Documentation, Release 0.4.1

crs
str or int – The CRS of the data. Can either be the EPSG code, well-known name, or a PROJ.4 projection
string.

cell_type
str – The data type of the cells of the rasters.

no_data_value
int or float or None – The noData value of the rasters within the layer. This can either be None, an int,
or a float depending on the cell_type.

extent
Extent – The Extent that covers the all of the rasters.

tile_layout
TileLayout – The TileLayout that describes how the rasters are orginized.

layout_definition
LayoutDefinition – The LayoutDefinition of all rasters.

classmethod from_dict(metadata_dict)
Creates Metadata from a dictionary.

Parameters metadata_dict (dict) – The Metadata of a RasterLayer or
TiledRasterLayer instance that is in dict form.

Returns Metadata

to_dict()
Converts this instance to a dict.

Returns dict

2.13.1 geopyspark.geotrellis.catalog module

Methods for reading, querying, and saving tile layers to and from GeoTrellis Catalogs.

geopyspark.geotrellis.catalog.read_layer_metadata(uri, layer_name, layer_zoom)
Reads the metadata from a saved layer without reading in the whole layer.

Parameters

• uri (str) – The Uniform Resource Identifier used to point towards the desired GeoTrellis
catalog to be read from. The shape of this string varies depending on backend.

• layer_name (str) – The name of the GeoTrellis catalog to be read from.

• layer_zoom (int) – The zoom level of the layer that is to be read.

Returns Metadata

geopyspark.geotrellis.catalog.read_value(uri, layer_name, layer_zoom, col, row,
zdt=None)

Reads a single Tile from a GeoTrellis catalog. Unlike other functions in this module, this will not return a
TiledRasterLayer, but rather a GeoPySpark formatted raster.

Note: When requesting a tile that does not exist, None will be returned.

Parameters

124 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

• uri (str) – The Uniform Resource Identifier used to point towards the desired GeoTrellis
catalog to be read from. The shape of this string varies depending on backend.

• layer_name (str) – The name of the GeoTrellis catalog to be read from.

• layer_zoom (int) – The zoom level of the layer that is to be read.

• col (int) – The col number of the tile within the layout. Cols run east to west.

• row (int) – The row number of the tile within the layout. Row run north to south.

• zdt (datetime.datetime) – The time stamp of the tile if the data is spatial-temporal.
This is represented as a datetime.datetime. instance. The default value is, None. If
None, then only the spatial area will be queried.

Returns Tile

geopyspark.geotrellis.catalog.query(uri, layer_name, layer_zoom=None, query_geom=None,
time_intervals=None, query_proj=None,
num_partitions=None)

Queries a single, zoom layer from a GeoTrellis catalog given spatial and/or time parameters.

Note: The whole layer could still be read in if intersects and/or time_intervals have not been set,
or if the querried region contains the entire layer.

Parameters

• layer_type (str or LayerType) – What the layer type of the geotiffs are. This is repre-
sented by either constants within LayerType or by a string.

• uri (str) – The Uniform Resource Identifier used to point towards the desired GeoTrellis
catalog to be read from. The shape of this string varies depending on backend.

• layer_name (str) – The name of the GeoTrellis catalog to be querried.

• layer_zoom (int, optional) – The zoom level of the layer that is to be querried. If
None, then the layer_zoom will be set to 0.

• query_geom (bytes or shapely.geometry or Extent, Optional) – The desired spatial area
to be returned. Can either be a string, a shapely geometry, or instance of Extent, or a
WKB verson of the geometry.

Note: Not all shapely geometires are supported. The following is are the types that are
supported: * Point * Polygon * MultiPolygon

Note: Only layers that were made from spatial, singleband GeoTiffs can query a Point.
All other types are restricted to Polygon and MulitPolygon.

Note: If the queried region does not intersect the layer, then an empty layer will be returned.

If not specified, then the entire layer will be read.

• time_intervals ([datetime.datetime], optional) – A list of the time intervals
to query. This parameter is only used when querying spatial-temporal data. The default
value is, None. If None, then only the spatial area will be querried.

2.13. geopyspark.geotrellis package 125

GeoPySpark Documentation, Release 0.4.1

• query_proj (int or str, optional) – The crs of the querried geometry if it is
different than the layer it is being filtered against. If they are different and this is not set,
then the returned TiledRasterLayer could contain incorrect values. If None, then the
geometry and layer are assumed to be in the same projection.

• num_partitions (int, optional) – Sets RDD partition count when reading from
catalog.

Returns TiledRasterLayer

geopyspark.geotrellis.catalog.write(uri, layer_name, tiled_raster_layer, in-
dex_strategy=<IndexingMethod.ZORDER: ’zorder’>,
time_unit=None, time_resolution=None, store=None)

Writes a tile layer to a specified destination.

Parameters

• uri (str) – The Uniform Resource Identifier used to point towards the desired location
for the tile layer to written to. The shape of this string varies depending on backend.

• layer_name (str) – The name of the new, tile layer.

• layer_zoom (int) – The zoom level the layer should be saved at.

• tiled_raster_layer (TiledRasterLayer) – The TiledRasterLayer to be
saved.

• index_strategy (str or IndexingMethod) – The method used to orginize the saved
data. Depending on the type of data within the layer, only certain methods are available.
Can either be a string or a IndexingMethod attribute. The default method used is,
IndexingMethod.ZORDER.

• time_unit (str or TimeUnit, optional) – Which time unit should be used when saving
spatial-temporal data. This controls the resolution of each index. Meaning, what time in-
tervals are used to seperate each record. While this is set to None as default, it must be set
if saving spatial-temporal data. Depending on the indexing method chosen, different time
units are used.

• time_resolution (str or int, optional) – Determines how data for each
time_unit should be grouped together. By default, no grouping will occur.

As an example, having a time_unit of WEEKS and a time_resolution of 5
will cause the data to be grouped and stored together in units of 5 weeks. If however
time_resolution is not specified, then the data will be grouped and stored in units
of single weeks.

This value can either be an int or a string representation of an int.

• store (str or AttributeStore, optional) – AttributeStore instance or URI for
layer metadata lookup.

class geopyspark.geotrellis.catalog.AttributeStore(uri)
AttributeStore provides a way to read and write GeoTrellis layer attributes.

Internally all attribute values are stored as JSON, here they are exposed as dictionaries. Classes often stored
have a .from_dict and .to_dict methods to bridge the gap:

import geopyspark as gps
store = gps.AttributeStore("s3://azavea-datahub/catalog")
hist = store.layer("us-nlcd2011-30m-epsg3857", zoom=7).read("histogram")
hist = gps.Histogram.from_dict(hist)

126 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

class Attributes(store, layer_name, layer_zoom)
Accessor class for all attributes for a given layer

delete(name)
Delete attribute by name

Parameters name (str) – Attribute name

read(name)
Read layer attribute by name as a dict

Parameters name (str) –
Returns Attribute value
Return type dict

write(name, value)
Write layer attribute value as a dict

Parameters
• name (str) – Attribute name
• value (dict) – Attribute value

classmethod build(store)
Builds AttributeStore from URI or passes an instance through.

Parameters uri (str or AttributeStore) – URI for AttributeStore object or instance.

Returns AttributeStore

classmethod cached(uri)
Returns cached version of AttributeStore for URI or creates one

contains(name, zoom=None)
Checks if this store contains a layer metadata.

Parameters

• name (str) – Layer name

• zoom (int, optional) – Layer zoom

Returns bool

delete(name, zoom=None)
Delete layer and all its attributes

Parameters

• name (str) – Layer name

• zoom (int, optional) – Layer zoom

layer(name, zoom=None)
Layer Attributes object for given layer :param name: Layer name :type name: str :param zoom: Layer
zoom :type zoom: int, optional

Returns Attributes

layers()
List all layers Attributes objects

Returns [:class:`~geopyspark.geotrellis.catalog.AttributeStore.
Attributes`]

2.13. geopyspark.geotrellis package 127

GeoPySpark Documentation, Release 0.4.1

2.13.2 geopyspark.geotrellis.color module

This module contains functions needed to create color maps used in coloring tiles, PNGs, and GeoTiffs.

geopyspark.geotrellis.color.get_colors_from_colors(colors)
Returns a list of integer colors from a list of Color objects from the colortools package.

Parameters colors ([colortools.Color]) – A list of color stops using colortools.Color

Returns [int]

geopyspark.geotrellis.color.get_colors_from_matplotlib(ramp_name,
num_colors=256)

Returns a list of color breaks from the color ramps defined by Matplotlib.

Parameters

• ramp_name (str) – The name of a matplotlib color ramp. See the matplotlib documenta-
tion for a list of names and details on each color ramp.

• num_colors (int, optional) – The number of color breaks to derive from the named
map.

Returns [int]

class geopyspark.geotrellis.color.ColorMap(cmap)
A class that wraps a GeoTrellis ColorMap class.

Parameters cmap (py4j.java_gateway.JavaObject) – The JavaObject that represents
the GeoTrellis ColorMap.

cmap
py4j.java_gateway.JavaObject – The JavaObject that represents the GeoTrellis ColorMap.

classmethod build(breaks, colors=None, no_data_color=0, fallback=0, classifica-
tion_strategy=<ClassificationStrategy.LESS_THAN_OR_EQUAL_TO:
’LessThanOrEqualTo’>)

Given breaks and colors, build a ColorMap object.

Parameters

• breaks (dict or list or np.ndarray or Histogram) – If a dict then a mapping from
tile values to colors, the latter represented as integers e.g., 0xff000080 is red at half opacity.
If a list then tile values that specify breaks in the color mapping. If a Histogram then
a histogram from which breaks can be derived.

• colors (str or list, optional) – If a str then the name of a matplotlib color
ramp. If a list then either a list of colortools Color objects or a list of integers contain-
ing packed RGBA values. If None, then the ColorMapwill be created from the breaks
given.

• no_data_color (int, optional) – A color to replace NODATA values with

• fallback (int, optional) – A color to replace cells that have no value in the map-
ping

• classification_strategy (str or ClassificationStrategy , optional)
– A string giving the strategy for converting tile values to colors. e.g., if
ClassificationStrategy.LESS_THAN_OR_EQUAL_TO is specified, and the
break map is {3: 0xff0000ff, 4: 0x00ff00ff}, then values up to 3 map to red, values from
above 3 and up to and including 4 become green, and values over 4 become the fallback
color.

Returns ColorMap

128 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

classmethod from_break_map(break_map, no_data_color=0, fallback=0, classifica-
tion_strategy=<ClassificationStrategy.LESS_THAN_OR_EQUAL_TO:
’LessThanOrEqualTo’>)

Converts a dictionary mapping from tile values to colors to a ColorMap.

Parameters

• break_map (dict) – A mapping from tile values to colors, the latter represented as
integers e.g., 0xff000080 is red at half opacity.

• no_data_color (int, optional) – A color to replace NODATA values with

• fallback (int, optional) – A color to replace cells that have no value in the map-
ping

• classification_strategy (str or ClassificationStrategy , optional)
– A string giving the strategy for converting tile values to colors. e.g., if
ClassificationStrategy.LESS_THAN_OR_EQUAL_TO is specified, and the
break map is {3: 0xff0000ff, 4: 0x00ff00ff}, then values up to 3 map to red, values from
above 3 and up to and including 4 become green, and values over 4 become the fallback
color.

Returns ColorMap

classmethod from_colors(breaks, color_list, no_data_color=0, fallback=0, classifica-
tion_strategy=<ClassificationStrategy.LESS_THAN_OR_EQUAL_TO:
’LessThanOrEqualTo’>)

Converts lists of values and colors to a ColorMap.

Parameters

• breaks (list) – The tile values that specify breaks in the color mapping.

• color_list ([int]) – The colors corresponding to the values in the breaks list, rep-
resented as integers—e.g., 0xff000080 is red at half opacity.

• no_data_color (int, optional) – A color to replace NODATA values with

• fallback (int, optional) – A color to replace cells that have no value in the map-
ping

• classification_strategy (str or ClassificationStrategy , optional)
– A string giving the strategy for converting tile values to colors. e.g., if
ClassificationStrategy.LESS_THAN_OR_EQUAL_TO is specified, and the
break map is {3: 0xff0000ff, 4: 0x00ff00ff}, then values up to 3 map to red, values from
above 3 and up to and including 4 become green, and values over 4 become the fallback
color.

Returns ColorMap

classmethod from_histogram(histogram, color_list, no_data_color=0, fallback=0, classifica-
tion_strategy=<ClassificationStrategy.LESS_THAN_OR_EQUAL_TO:
’LessThanOrEqualTo’>)

Converts a wrapped GeoTrellis histogram into a ColorMap.

Parameters

• histogram (Histogram) – A Histogram instance; specifies breaks

• color_list ([int]) – The colors corresponding to the values in the breaks list, rep-
resented as integers e.g., 0xff000080 is red at half opacity.

• no_data_color (int, optional) – A color to replace NODATA values with

2.13. geopyspark.geotrellis package 129

GeoPySpark Documentation, Release 0.4.1

• fallback (int, optional) – A color to replace cells that have no value in the map-
ping

• classification_strategy (str or ClassificationStrategy , optional)
– A string giving the strategy for converting tile values to colors. e.g., if
ClassificationStrategy.LESS_THAN_OR_EQUAL_TO is specified, and the
break map is {3: 0xff0000ff, 4: 0x00ff00ff}, then values up to 3 map to red, values from
above 3 and up to and including 4 become green, and values over 4 become the fallback
color.

Returns ColorMap

static nlcd_colormap()
Returns a color map for NLCD tiles.

Returns ColorMap

2.13.3 geopyspark.geotrellis.combine_bands module

geopyspark.geotrellis.combine_bands.combine_bands(layers)
Combines the bands of values that share the same key in two or more TiledRasterLayers.

This method will concat the bands of two or more values with the same key. For example, layer a has values
that have 2 bands and layer b has values with 1 band. When combine_bands is used on both of these
layers, then the resulting layer will have values with 3 bands, 2 from layer a and 1 from layer b.

Note: All layers must have the same layer_type. If the layers are TiledRasterLayers, then all of the
layers must also have the same TileLayout and CRS.

Parameters layers ([RasterLayer] or [TiledRasterLayer] or (RasterLayer)
or (TiledRasterLayer)) – A colection of two or more RasterLayers or
TiledRasterLayers. The order of the layers determines the order in which the bands
are concatenated. With the bands being ordered based on the position of their respective layer.

For example, the first layer in layers is layer a which contains 2 bands and the second
layer is layer b whose values have 1 band. The resulting layer will have values with 3 bands:
the first 2 are from layer a and the third from layer b. If the positions of layer a and
layer b are reversed, then the resulting values’ first band will be from layer b and the last
2 will be from layer a.

Returns RasterLayer or TiledRasterLayer

2.13.4 geopyspark.geotrellis.constants module

Constants that are used by geopyspark.geotrellis classes, methods, and functions.

geopyspark.geotrellis.constants.NO_DATA_INT = -2147483648
The default size of each tile in the resulting layer.

class geopyspark.geotrellis.constants.LayerType
The type of the key within the tuple of the wrapped RDD.

SPACETIME = 'spacetime'

130 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

SPATIAL = 'spatial'
Indicates that the RDD contains (K, V) pairs, where the K has a spatial and time attribute. Both
TemporalProjectedExtent and SpaceTimeKey are examples of this type of K.

class geopyspark.geotrellis.constants.IndexingMethod
How the wrapped should be indexed when saved.

HILBERT = 'hilbert'
A key indexing method. Works only for RDDs that contain SpatialKey . This method provides the
fastest lookup of all the key indexing method, however, it does not give good locality guarantees. It is
recommended then that this method should only be used when locality is not important for your analysis.

ROWMAJOR = 'rowmajor'

ZORDER = 'zorder'
A key indexing method. Works for RDDs that contain both SpatialKey and SpaceTimeKey . Note,
indexes are determined by the x, y, and if SPACETIME, the temporal resolutions of a point. This is
expressed in bits, and has a max value of 62. Thus if the sum of those resolutions are greater than 62, then
the indexing will fail.

class geopyspark.geotrellis.constants.ResampleMethod
Resampling Methods.

AVERAGE = 'Average'

BILINEAR = 'Bilinear'

CUBIC_CONVOLUTION = 'CubicConvolution'

CUBIC_SPLINE = 'CubicSpline'

LANCZOS = 'Lanczos'

MAX = 'Max'

MEDIAN = 'Median'

MIN = 'Min'

MODE = 'Mode'

NEAREST_NEIGHBOR = 'NearestNeighbor'

class geopyspark.geotrellis.constants.TimeUnit
ZORDER time units.

DAYS = 'days'

HOURS = 'hours'

MILLIS = 'millis'

MINUTES = 'minutes'

MONTHS = 'months'

SECONDS = 'seconds'

WEEKS = 'weeks'

YEARS = 'years'

class geopyspark.geotrellis.constants.Operation
Focal opertions.

ASPECT = 'Aspect'

2.13. geopyspark.geotrellis package 131

GeoPySpark Documentation, Release 0.4.1

MAX = 'Max'

MEAN = 'Mean'

MEDIAN = 'Median'

MIN = 'Min'

MODE = 'Mode'

STANDARD_DEVIATION = 'StandardDeviation'

SUM = 'Sum'

VARIANCE = 'Variance'

class geopyspark.geotrellis.constants.Neighborhood
Neighborhood types.

ANNULUS = 'Annulus'

CIRCLE = 'Circle'

NESW = 'Nesw'

SQUARE = 'Square'

WEDGE = 'Wedge'

class geopyspark.geotrellis.constants.ClassificationStrategy
Classification strategies for color mapping.

EXACT = 'Exact'

GREATER_THAN = 'GreaterThan'

GREATER_THAN_OR_EQUAL_TO = 'GreaterThanOrEqualTo'

LESS_THAN = 'LessThan'

LESS_THAN_OR_EQUAL_TO = 'LessThanOrEqualTo'

class geopyspark.geotrellis.constants.CellType
Cell types.

BOOL = 'bool'

BOOLRAW = 'boolraw'

FLOAT32 = 'float32'

FLOAT32RAW = 'float32raw'

FLOAT64 = 'float64'

FLOAT64RAW = 'float64raw'

INT16 = 'int16'

INT16RAW = 'int16raw'

INT32 = 'int32'

INT32RAW = 'int32raw'

INT8 = 'int8'

INT8RAW = 'int8raw'

UINT16 = 'uint16'

132 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

UINT16RAW = 'uint16raw'

UINT8 = 'uint8'

UINT8RAW = 'uint8raw'

class geopyspark.geotrellis.constants.ColorRamp
ColorRamp names.

BLUE_TO_ORANGE = 'BlueToOrange'

BLUE_TO_RED = 'BlueToRed'

CLASSIFICATION_BOLD_LAND_USE = 'ClassificationBoldLandUse'

CLASSIFICATION_MUTED_TERRAIN = 'ClassificationMutedTerrain'

COOLWARM = 'CoolWarm'

GREEN_TO_RED_ORANGE = 'GreenToRedOrange'

HEATMAP_BLUE_TO_YELLOW_TO_RED_SPECTRUM = 'HeatmapBlueToYellowToRedSpectrum'

HEATMAP_DARK_RED_TO_YELLOW_WHITE = 'HeatmapDarkRedToYellowWhite'

HEATMAP_LIGHT_PURPLE_TO_DARK_PURPLE_TO_WHITE = 'HeatmapLightPurpleToDarkPurpleToWhite'

HEATMAP_YELLOW_TO_RED = 'HeatmapYellowToRed'

Hot = 'Hot'

INFERNO = 'Inferno'

LIGHT_TO_DARK_GREEN = 'LightToDarkGreen'

LIGHT_TO_DARK_SUNSET = 'LightToDarkSunset'

LIGHT_YELLOW_TO_ORANGE = 'LightYellowToOrange'

MAGMA = 'Magma'

PLASMA = 'Plasma'

VIRIDIS = 'Viridis'

geopyspark.geotrellis.constants.DEFAULT_MAX_TILE_SIZE = 256
The default byte size of each partition.

geopyspark.geotrellis.constants.DEFAULT_PARTITION_BYTES = 1343225856
The default number of bytes that should be read in at a time.

geopyspark.geotrellis.constants.DEFAULT_CHUNK_SIZE = 65536
The default name of the GeoTiff tag that contains the timestamp for the tile.

geopyspark.geotrellis.constants.DEFAULT_GEOTIFF_TIME_TAG = 'TIFFTAG_DATETIME'
The default pattern that will be parsed from the timeTag.

geopyspark.geotrellis.constants.DEFAULT_GEOTIFF_TIME_FORMAT = 'yyyy:MM:dd HH:mm:ss'
The default S3 Client to use when reading layers in.

class geopyspark.geotrellis.constants.StorageMethod
Internal storage methods for GeoTiffs.

STRIPED = 'Striped'

TILED = 'Tiled'

class geopyspark.geotrellis.constants.ColorSpace
Color space types for GeoTiffs.

2.13. geopyspark.geotrellis package 133

GeoPySpark Documentation, Release 0.4.1

BLACK_IS_ZERO = 1

CFA = 32803

CIE_LAB = 8

CMYK = 5

ICC_LAB = 9

ITU_LAB = 10

LINEAR_RAW = 34892

LOG_L = 32844

LOG_LUV = 32845

PALETTE = 3

RGB = 2

TRANSPARENCY_MASK = 4

WHITE_IS_ZERO = 0

Y_CB_CR = 6

class geopyspark.geotrellis.constants.Compression
Compression methods for GeoTiffs.

DEFLATE_COMPRESSION = 'DeflateCompression'

NO_COMPRESSION = 'NoCompression'

class geopyspark.geotrellis.constants.Unit
Represents the units of elevation.

FEET = 'Feet'

METERS = 'Meters'

2.13.5 geopyspark.geotrellis.cost_distance module

geopyspark.geotrellis.cost_distance.cost_distance(friction_layer, geometries,
max_distance)

Performs cost distance of a TileLayer.

Parameters

• friction_layer (TiledRasterLayer) – TiledRasterLayer of a friction sur-
face to traverse.

• geometries (list) – A list of shapely geometries to be used as a starting point.

Note: All geometries must be in the same CRS as the TileLayer.

• max_distance (int or float) – The maximum cost that a path may reach before
the operation. stops. This value can be an int or float.

Returns TiledRasterLayer

134 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

2.13.6 geopyspark.geotrellis.euclidean_distance module

geopyspark.geotrellis.euclidean_distance.euclidean_distance(geometry,
source_crs, zoom,
cell_type=<CellType.FLOAT64:
’float64’>)

Calculates the Euclidean distance of a Shapely geometry.

Parameters

• geometry (shapely.geometry) – The input geometry to compute the Euclidean dis-
tance for.

• source_crs (str or int) – The CRS of the input geometry.

• zoom (int) – The zoom level of the output raster.

• cell_type (str or CellType, optional) – The data type of the cells for the new layer. If
not specified, then CellType.FLOAT64 is used.

Note: This function may run very slowly for polygonal inputs if they cover many cells of the output raster.

Returns TiledRasterLayer

2.13.7 geopyspark.geotrellis.geotiff module

This module contains functions that create RasterLayer from files.

geopyspark.geotrellis.geotiff.get(layer_type, uri, crs=None,
max_tile_size=256, num_partitions=None,
chunk_size=65536, partition_bytes=1343225856,
time_tag=’TIFFTAG_DATETIME’,
time_format=’yyyy:MM:dd HH:mm:ss’, delimiter=None,
s3_client=’default’)

Creates a RasterLayer from GeoTiffs that are located on the local file system, HDFS, or S3.

Parameters

• layer_type (str or LayerType) – What the layer type of the geotiffs are. This is repre-
sented by either constants within LayerType or by a string.

Note: All of the GeoTiffs must have the same saptial type.

• uri (str or [str]) – The path or list of paths to the desired tile(s)/directory(ies).

• crs (str or int, optional) – The CRS that the output tiles should be in. If None,
then the CRS that the tiles were originally in will be used.

• max_tile_size (int or None, optional) – The max size of each tile in the re-
sulting Layer. If the size is smaller than the read in tile, then that tile will be broken into
smaller sections of the given size. Defaults to DEFAULT_MAX_TILE_SIZE. If None,
then the whole tile will be read in.

• num_partitions (int, optional) – The number of partitions Spark will make
when the data is repartitioned. If None, then the data will not be repartitioned.

2.13. geopyspark.geotrellis package 135

GeoPySpark Documentation, Release 0.4.1

Note: If max_tile_size is also specified then this parameter will be ignored.

• partition_bytes (int, optional) – The desired number of bytes per partition.
This is will ensure that at least one item is assigned for each partition. Defaults to
DEFAULT_PARTITION_BYTES.

• chunk_size (int, optional) – How many bytes of the file should be read in at a
time. Defaults to DEFAULT_CHUNK_SIZE.

• time_tag (str, optional) – The name of the tiff tag that contains the time stamp for
the tile. Defaults to DEFAULT_GEOTIFF_TIME_TAG.

• time_format (str, optional) – The pattern of the time stamp to be parsed. Defaults
to DEFAULT_GEOTIFF_TIME_FORMAT.

• delimiter (str, optional) – The delimiter to use for S3 object listings.

Note: This parameter will only be used when reading from S3.

• s3_client (str, optional) – Which S3Cleint to use when reading Geo-
Tiffs from S3. There are currently two options: default and mock. Defaults to
DEFAULT_S3_CLIENT.

Note: mock should only be used in unit tests and debugging.

Returns RasterLayer

2.13.8 geopyspark.geotrellis.hillshade module

geopyspark.geotrellis.hillshade.hillshade(tiled_raster_layer, zfactor_calculator, band=0,
azimuth=315.0, altitude=45.0)

Computes Hillshade (shaded relief) from a raster.

The resulting raster will be a shaded relief map (a hill shading) based on the sun altitude, azimuth, and the
zfactor. The zfactor is a conversion factor from map units to elevation units.

The hillshade` operation will be carried out in a SQUARE neighborhood with with an extent of 1. The
zfactor will be derived from the zfactor_calculator for each Tile in the Layer. The resulting Layer
will have a cell_type of INT16 regardless of the input Layer’s cell_type; as well as have a single band,
that represents the calculated hillshade.

Returns a raster of ShortConstantNoDataCellType.

For descriptions of parameters, please see Esri Desktop’s description of Hillshade.

Parameters

• tiled_raster_layer (TiledRasterLayer) – The base layer that contains the
rasters used to compute the hillshade.

• zfactor_calculator (py4j.JavaObject) – A JavaObject that represents
the Scala ZFactorCalculator class. This can be created using either the
zfactor_lat_lng_calculator() or the zfactor_calculator() methods.

• band (int, optional) – The band of the raster to base the hillshade calculation on.
Default is 0.

136 Chapter 2. Contact and Support

http://goo.gl/DtVDQ

GeoPySpark Documentation, Release 0.4.1

• azimuth (float, optional) – The azimuth angle of the source of light. Default value
is 315.0.

• altitude (float, optional) – The angle of the altitude of the light above the hori-
zon. Default is 45.0.

Returns TiledRasterLayer

2.13.9 geopyspark.geotrellis.histogram module

This module contains the Histogram class which is a wrapper of the GeoTrellis Histogram class.

class geopyspark.geotrellis.histogram.Histogram(scala_histogram)
A wrapper class for a GeoTrellis Histogram.

The underlying histogram is produced from the values within a TiledRasterLayer. These values repre-
sented by the histogram can either be Int or Float depending on the data type of the cells in the layer.

Parameters scala_histogram (py4j.JavaObject) – An instance of the GeoTrellis his-
togram.

scala_histogram
py4j.JavaObject – An instance of the GeoTrellis histogram.

bin_counts()
Returns a list of tuples where the key is the bin label value and the value is the label’s respective count.

Returns [(int, int)] or [(float, int)]

bucket_count()
Returns the number of buckets within the histogram.

Returns int

cdf()
Returns the cdf of the distribution of the histogram.

Returns [(float, float)]

classmethod from_dict(value)
Encodes histogram as a dictionary

item_count(item)
Returns the total number of times a given item appears in the histogram.

Parameters item (int or float) – The value whose occurences should be counted.

Returns The total count of the occurences of item in the histogram.

Return type int

max()
The largest value of the histogram.

This will return either an int or float depedning on the type of values within the histogram.

Returns int or float

mean()
Determines the mean of the histogram.

Returns float

median()
Determines the median of the histogram.

2.13. geopyspark.geotrellis package 137

GeoPySpark Documentation, Release 0.4.1

Returns float

merge(other_histogram)
Merges this instance of Histogram with another. The resulting Histogram will contain values from
both ‘‘Histogram‘‘s

Parameters other_histogram (Histogram) – The Histogram that should be merged
with this instance.

Returns Histogram

min()
The smallest value of the histogram.

This will return either an int or float depedning on the type of values within the histogram.

Returns int or float

min_max()
The largest and smallest values of the histogram.

This will return either an int or float depedning on the type of values within the histogram.

Returns (int, int) or (float, float)

mode()
Determines the mode of the histogram.

This will return either an int or float depedning on the type of values within the histogram.

Returns int or float

quantile_breaks(num_breaks)
Returns quantile breaks for this Layer.

Parameters num_breaks (int) – The number of breaks to return.

Returns [int]

to_dict()
Encodes histogram as a dictionary

Returns dict

values()
Lists each indiviual value within the histogram.

This will return a list of either ‘‘int‘‘s or ‘‘float‘‘s depedning on the type of values within the histogram.

Returns [int] or [float]

2.13.10 geopyspark.geotrellis.layer module

This module contains the RasterLayer and the TiledRasterLayer classes. Both of these classes are wrappers
of their Scala counterparts. These will be used in leau of actual PySpark RDDs when performing operations.

class geopyspark.geotrellis.layer.RasterLayer(layer_type, srdd)
A wrapper of a RDD that contains GeoTrellis rasters.

Represents a layer that wraps a RDD that contains (K, V). Where K is either ProjectedExtent or
TemporalProjectedExtent depending on the layer_type of the RDD, and V being a Tile.

The data held within this layer has not been tiled. Meaning the data has yet to be modified to fit a certain layout.
See raster_rdd for more information.

138 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Parameters

• layer_type (str or LayerType) – What the layer type of the geotiffs are. This is repre-
sented by either constants within LayerType or by a string.

• srdd (py4j.java_gateway.JavaObject) – The coresponding Scala class. This is
what allows RasterLayer to access the various Scala methods.

pysc
pyspark.SparkContext – The SparkContext being used this session.

layer_type
LayerType – What the layer type of the geotiffs are.

srdd
py4j.java_gateway.JavaObject – The coresponding Scala class. This is what allows RasterLayer to
access the various Scala methods.

bands(band)
Select a subsection of bands from the Tiles within the layer.

Note: There could be potential high performance cost if operations are performed between two sub-bands
of a large data set.

Note: Due to the natue of GeoPySpark’s backend, if selecting a band that is out of bounds then the error
returned will be a py4j.protocol.Py4JJavaError and not a normal Python error.

Parameters band (int or tuple or list or range) – The band(s) to be selected
from the Tiles. Can either be a single int, or a collection of ints.

Returns RasterLayer with the selected bands.

cache()
Persist this RDD with the default storage level (C{MEMORY_ONLY}).

collect_keys()
Returns a list of all of the keys in the layer.

Note: This method should only be called on layers with a smaller number of keys, as a large number
could cause memory issues.

Returns [:class:`~geopyspark.geotrellis.SpatialKey`] or
[:ob:`~geopyspark.geotrellis.SpaceTimeKey`]

collect_metadata(layout=LocalLayout(tile_cols=256, tile_rows=256))
Iterate over the RDD records and generates layer metadata desribing the contained rasters.

:param layout (LayoutDefinition or: GlobalLayout or

LocalLayout, optional): Target raster layout for the tiling operation.

Returns Metadata

2.13. geopyspark.geotrellis package 139

GeoPySpark Documentation, Release 0.4.1

convert_data_type(new_type, no_data_value=None)
Converts the underlying, raster values to a new CellType.

Parameters

• new_type (str or CellType) – The data type the cells should be to converted to.

• no_data_value (int or float, optional) – The value that should be marked
as NoData.

Returns RasterLayer

Raises

• ValueError – If no_data_value is set and the new_type contains raw values.

• ValueError – If no_data_value is set and new_type is a boolean.

count()
Returns how many elements are within the wrapped RDD.

Returns The number of elements in the RDD.

Return type Int

filter_by_times(time_intervals)
Filters a SPACETIME layer by keeping only the values whose keys fall within a the given time interval(s).

Parameters time_intervals ([datetime.datetime]) – A list of the time intervals to
query. This list can have one or multiple elements. If just a single element, then only exact
matches with that given time will be kept. If there are multiple times given, then they are each
paired together so that they form ranges of time. In the case where there are an odd number
of elements, then the remaining time will be treated as a single query and not a range.

Note: If nothing intersects the given time_intervals, then the returned RasterLayer will be
empty.

Returns RasterLayer

classmethod from_numpy_rdd(layer_type, numpy_rdd)
Create a RasterLayer from a numpy RDD.

Parameters

• layer_type (str or LayerType) – What the layer type of the geotiffs are. This is
represented by either constants within LayerType or by a string.

• numpy_rdd (pyspark.RDD) – A PySpark RDD that contains tuples of either
ProjectedExtents or TemporalProjectedExtents and rasters that are repre-
sented by a numpy array.

Returns RasterLayer

getNumPartitions()
Returns the number of partitions set for the wrapped RDD.

Returns The number of partitions.

Return type Int

140 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

get_class_histogram()
Creates a Histogram of integer values. Suitable for classification rasters with limited number values. If
only single band is present histogram is returned directly.

Returns Histogram or [Histogram]

get_histogram()
Creates a Histogram for each band in the layer. If only single band is present histogram is returned
directly.

Returns Histogram or [Histogram]

get_min_max()
Returns the maximum and minimum values of all of the rasters in the layer.

Returns (float, float)

get_partition_strategy()
Returns the partitioning strategy if the layer has one.

Returns HashPartitioner or SpatialPartitioner or
SpaceTimePartitionStrategy or None

get_quantile_breaks(num_breaks)
Returns quantile breaks for this Layer.

Parameters num_breaks (int) – The number of breaks to return.

Returns [float]

get_quantile_breaks_exact_int(num_breaks)
Returns quantile breaks for this Layer. This version uses the FastMapHistogram, which counts exact
integer values. If your layer has too many values, this can cause memory errors.

Parameters num_breaks (int) – The number of breaks to return.

Returns [int]

isEmpty()
Returns a bool that is True if the layer is empty and False if it is not.

Returns Are there elements within the layer

Return type bool

map_cells(func)
Maps over the cells of each Tile within the layer with a given function.

Note: This operation first needs to deserialize the wrapped RDD into Python and then serialize the RDD
back into a TiledRasterRDD once the mapping is done. Thus, it is advised to chain together operations
to reduce performance cost.

Parameters func (cells, nd => cells) – A function that takes two arguements:
cells and nd. Where cells is the numpy array and nd is the no_data_value of
the Tile. It returns cells which are the new cells values of the Tile represented as a
numpy array.

Returns RasterLayer

map_tiles(func)
Maps over each Tile within the layer with a given function.

2.13. geopyspark.geotrellis package 141

GeoPySpark Documentation, Release 0.4.1

Note: This operation first needs to deserialize the wrapped RDD into Python and then serialize the RDD
back into a RasterRDD once the mapping is done. Thus, it is advised to chain together operations to
reduce performance cost.

Parameters func (Tile => Tile) – A function that takes a Tile and returns a Tile.

Returns RasterLayer

merge(partition_strategy=None)
Merges the Tile of each K together to produce a single Tile.

This method will reduce each value by its key within the layer to produce a single (K, V) for every K. In
order to achieve this, each Tile that shares a K is merged together to form a single Tile. This is done by
replacing one Tile’s cells with another’s. Not all cells, if any, may be replaced, however. The following
steps are taken to determine if a cell’s value should be replaced:

1. If the cell contains a NoData value, then it will be replaced.

2. If no NoData value is set, then a cell with a value of 0 will be replaced.

3. If neither of the above are true, then the cell retain its value.

Parameters

• num_partitions (int, optional) – The number of partitions that the resulting
layer should be partitioned with. If None, then the num_partitions will the number
of partitions the layer curretly has.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions
as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting
layer will have the Partioner specified in the strategy with the with same number of
partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Returns RasterLayer

partitionBy(partition_strategy=None)
Repartitions the layer using the given partitioning strategy.

Parameters partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer
will have the Partioner specified in the strategy with the with same number of partitions
the source layer had.

142 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Returns RasterLayer

persist(storageLevel=StorageLevel(False, True, False, False, 1))
Set this RDD’s storage level to persist its values across operations after the first time it is computed. This
can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no
storage level is specified defaults to (C{MEMORY_ONLY}).

reclassify(value_map, data_type, classification_strategy=<ClassificationStrategy.LESS_THAN_OR_EQUAL_TO:
’LessThanOrEqualTo’>, replace_nodata_with=None, fallback_value=None,
strict=False)

Changes the cell values of a raster based on how the data is broken up in the given value_map.

Parameters

• value_map (dict) – A dict whose keys represent values where a break should occur
and its values are the new value the cells within the break should become.

• data_type (type) – The type of the values within the rasters. Can either be int or float.

• classification_strategy (str or ClassificationStrategy , optional)
– How the cells should be classified along the breaks. If unspecified, then
ClassificationStrategy.LESS_THAN_OR_EQUAL_TO will be used.

• replace_nodata_with (int or float, optional) – When remapping val-
ues, NoData values must be treated separately. If NoData values are intended to be
replaced during the reclassify, this variable should be set to the intended value. If unspec-
ified, NoData values will be preserved.

Note: Specifying replace_nodata_with will change the value of given cells, but
the NoData value of the layer will remain unchanged.

• fallback_value (int or float, optional) – Represents the
value that should be used when a cell’s value does not fall within the
classification_strategy. Default is to use the layer’s NoData value.

• strict (bool, optional) – Determines whether or not an error should be thrown
if a cell’s value does not fall within the classification_strategy. Default is,
False.

Returns RasterLayer

repartition(num_partitions=None)
Repartitions the layer to have a different number of partitions.

Parameters num_partitions (int, optional) – Desired number of partitions. Default
is, None .If None, then the exisiting number of partitions will be used.

Returns RasterLayer

reproject(target_crs, resample_method=<ResampleMethod.NEAREST_NEIGHBOR: ’Nearest-
Neighbor’>)

Reproject rasters to target_crs. The reproject does not sample past tile boundary.

Parameters

• target_crs (str or int) – Target CRS of reprojection. Either EPSG code, well-
known name, or a PROJ.4 string.

2.13. geopyspark.geotrellis package 143

GeoPySpark Documentation, Release 0.4.1

• resample_method (str or ResampleMethod, optional) – The resample method
to use for the reprojection. If none is specified, then ResampleMethods.
NEAREST_NEIGHBOR is used.

Returns RasterLayer

tile_to_layout(layout=LocalLayout(tile_cols=256, tile_rows=256), target_crs=None, resam-
ple_method=<ResampleMethod.NEAREST_NEIGHBOR: ’NearestNeighbor’>,
partition_strategy=None)

Cut tiles to layout and merge overlapping tiles. This will produce unique keys.

Parameters

• layout (Metadata or TiledRasterLayer or LayoutDefinition or
GlobalLayout or LocalLayout) – Target raster layout for the tiling operation.

• target_crs (str or int, optional) – Target CRS of reprojection. Either
EPSG code, well-known name, or a PROJ.4 string. If None, no reproject will be per-
fomed.

• resample_method (str or ResampleMethod, optional) – The
cell resample method to used during the tiling operation. Default
is‘‘ResampleMethods.NEAREST_NEIGHBOR‘‘.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions
as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting
layer will have the Partioner specified in the strategy with the with same number of
partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Returns TiledRasterLayer

to_geotiff_rdd(storage_method=<StorageMethod.STRIPED: ’Striped’>, rows_per_strip=None,
tile_dimensions=(256, 256), compression=<Compression.NO_COMPRESSION:
’NoCompression’>, color_space=<ColorSpace.BLACK_IS_ZERO: 1>,
color_map=None, head_tags=None, band_tags=None)

Converts the rasters within this layer to GeoTiffs which are then converted to bytes. This is returned as a
RDD[(K, bytes)]. Where K is either ProjectedExtent or TemporalProjectedExtent.

Parameters

• storage_method (str or StorageMethod, optional) – How the segments within the
GeoTiffs should be arranged. Default is StorageMethod.STRIPED.

• rows_per_strip (int, optional) – How many rows should be in each strip seg-
ment of the GeoTiffs if storage_method is StorageMethod.STRIPED. If None,
then the strip size will default to a value that is 8K or less.

• tile_dimensions ((int, int), optional) – The length and width for each
tile segment of the GeoTiff if storage_method is StorageMethod.TILED. If
None then the default size is (256, 256).

• compression (str or Compression, optional) – How the data should be compressed.
Defaults to Compression.NO_COMPRESSION.

144 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

• color_space (str or ColorSpace, optional) – How the colors should be organized in
the GeoTiffs. Defaults to ColorSpace.BLACK_IS_ZERO.

• color_map (ColorMap, optional) – A ColorMap instance used to color the GeoTiffs
to a different gradient.

• head_tags (dict, optional) – A dict where each key and value is a str.

• band_tags (list, optional) – A list of dicts where each key and value is a
str.

• Note – For more information on the contents of the tags, see
www.gdal.org/gdal_datamodel.html

Returns RDD[(K, bytes)]

to_numpy_rdd()
Converts a RasterLayer to a numpy RDD.

Note: Depending on the size of the data stored within the RDD, this can be an exspensive operation and
should be used with caution.

Returns RDD

to_png_rdd(color_map)
Converts the rasters within this layer to PNGs which are then converted to bytes. This is returned as a
RDD[(K, bytes)].

Parameters color_map (ColorMap) – A ColorMap instance used to color the PNGs.

Returns RDD[(K, bytes)]

to_spatial_layer(target_time=None)
Converts a RasterLayer with a layout_type of LayoutType.SPACETIME to a RasterLayer
with a layout_type of LayoutType.SPATIAL.

Parameters target_time (datetime.datetime, optional) – The instance of interest. If
set, the resulting RasterLayer will only contain keys that contained the given instance. If
None, then all values within the layer will be kept.

Returns RasterLayer

Raises ValueError – If the layer already has a layout_type of LayoutType.
SPATIAL.

unpersist()
Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.

with_no_data(no_data_value)
Changes the NoData value of the layer with the new given value.

It is possible to specify a NoData value for layers with raw values. The resulting layer will be of the
same CellType but with a user defined NoData value. For example, if a layer has a CellType of
float32raw and a no_data_value of -10 is given, then the produced layer will have a CellType
of float32ud-10.0.

If the target layer has a bool CellType, then the no_data_value will be ignored and the re-
sult layer will be the same as the origin. In order to assign a NoData value to a bool layer, the
convert_data_type() method must be used.

Parameters no_data_value (int or float) – The new NoData value of the layer.

2.13. geopyspark.geotrellis package 145

GeoPySpark Documentation, Release 0.4.1

Returns RasterLayer

wrapped_rdds()
Returns the list of RDD-containing objects wrapped by this object. The default implementation assumes
that subclass contains a single RDD container, srdd, which implements the persist() and unpersist() meth-
ods.

class geopyspark.geotrellis.layer.TiledRasterLayer(layer_type, srdd)
Wraps a RDD of tiled, GeoTrellis rasters.

Represents a RDD that contains (K, V). Where K is either SpatialKey or SpaceTimeKey depending on
the layer_type of the RDD, and V being a Tile.

The data held within the layer is tiled. This means that the rasters have been modified to fit a larger layout. For
more information, see tiled-raster-rdd.

Parameters

• layer_type (str or LayerType) – What the layer type of the geotiffs are. This is repre-
sented by either constants within LayerType or by a string.

• srdd (py4j.java_gateway.JavaObject) – The coresponding Scala class. This is
what allows TiledRasterLayer to access the various Scala methods.

pysc
pyspark.SparkContext – The SparkContext being used this session.

layer_type
LayerType – What the layer type of the geotiffs are.

srdd
py4j.java_gateway.JavaObject – The coresponding Scala class. This is what allows RasterLayer to
access the various Scala methods.

is_floating_point_layer
bool – Whether the data within the TiledRasterLayer is floating point or not.

layer_metadata
Metadata – The layer metadata associated with this layer.

zoom_level
int – The zoom level of the layer. Can be None.

aggregate_by_cell(operation)
Computes an aggregate summary for each cell of all of the values for each key.

The operation given is a local map algebra function that will be applied to all values that share the same
key. If there are multiple copies of the same key in the layer, then this method will reduce all instances
of the (K, Tile) pairs into a single element. This resulting (K, Tile)’s Tile will contain the
aggregate summaries of each cell of the reduced Tiles that had the same K.

Note: Not all Operations are supported. Only SUM, MIN, MAX, MEAN, VARIANCE, AND
STANDARD_DEVIATION can be used.

Note: If calculating VARIANCE or STANDARD_DEVIATION, then any K that is a single copy will have
a resulting Tile that is filled with NoData values. This is because the variance of a single element is
undefined.

146 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Parameters operation (str or Operation) – The aggregate operation to be performed.

Returns TiledRasterLayer

bands(band)
Select a subsection of bands from the Tiles within the layer.

Note: There could be potential high performance cost if operations are performed between two sub-bands
of a large data set.

Note: Due to the natue of GeoPySpark’s backend, if selecting a band that is out of bounds then the error
returned will be a py4j.protocol.Py4JJavaError and not a normal Python error.

Parameters band (int or tuple or list or range) – The band(s) to be selected
from the Tiles. Can either be a single int, or a collection of ints.

Returns TiledRasterLayer with the selected bands.

cache()
Persist this RDD with the default storage level (C{MEMORY_ONLY}).

collect_keys()
Returns a list of all of the keys in the layer.

Note: This method should only be called on layers with a smaller number of keys, as a large number
could cause memory issues.

Returns [:class:`~geopyspark.geotrellis.ProjectedExtent`] or
[:class:`~geopyspark.geotrellis.TemporalProjectedExtent`]

convert_data_type(new_type, no_data_value=None)
Converts the underlying, raster values to a new CellType.

Parameters

• new_type (str or CellType) – The data type the cells should be to converted to.

• no_data_value (int or float, optional) – The value that should be marked
as NoData.

Returns TiledRasterLayer

Raises

• ValueError – If no_data_value is set and the new_type contains raw values.

• ValueError – If no_data_value is set and new_type is a boolean.

count()
Returns how many elements are within the wrapped RDD.

Returns The number of elements in the RDD.

Return type Int

2.13. geopyspark.geotrellis package 147

GeoPySpark Documentation, Release 0.4.1

filter_by_times(time_intervals)
Filters a SPACETIME layer by keeping only the values whose keys fall within a the given time interval(s).

Parameters time_intervals ([datetime.datetime]) – A list of the time intervals to
query. This list can have one or multiple elements. If just a single element, then only exact
matches with that given time will be kept. If there are multiple times given, then they are each
paired together so that they form ranges of time. In the case where there are an odd number
of elements, then the remaining time will be treated as a single query and not a range.

Note: If nothing intersects the given time_intervals, then the returned TiledRasterLayer will
be empty.

Returns TiledRasterLayer

focal(operation, neighborhood=None, param_1=None, param_2=None, param_3=None, parti-
tion_strategy=None)

Performs the given focal operation on the layers contained in the Layer.

Parameters

• operation (str or Operation) – The focal operation to be performed.

• neighborhood (str or Neighborhood, optional) – The type of neighborhood to use
in the focal operation. This can be represented by either an instance of Neighborhood,
or by a constant.

• param_1 (int or float, optional) – The first argument of neighborhood.

• param_2 (int or float, optional) – The second argument of the
neighborhood.

• param_3 (int or float, optional) – The third argument of the
neighborhood.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions
as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting
layer will have the Partioner specified in the strategy with the with same number of
partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Note: param only need to be set if neighborhood is not an instance of Neighborhood or if
neighborhood is None.

Any param that is not set will default to 0.0.

If neighborhood is None then operation must be Operation.ASPECT.

Returns TiledRasterLayer

148 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Raises

• ValueError – If operation is not a known operation.

• ValueError – If neighborhood is not a known neighborhood.

• ValueError – If neighborhood was not set, and operation is not Operation.
ASPECT.

classmethod from_numpy_rdd(layer_type, numpy_rdd, metadata, zoom_level=None)
Create a TiledRasterLayer from a numpy RDD.

Parameters

• layer_type (str or LayerType) – What the layer type of the geotiffs are. This is
represented by either constants within LayerType or by a string.

• numpy_rdd (pyspark.RDD) – A PySpark RDD that contains tuples of either
SpatialKey or SpaceTimeKey and rasters that are represented by a numpy array.

• metadata (Metadata) – The Metadata of the TiledRasterLayer instance.

• zoom_level (int, optional) – The zoom_level the resulting TiledRasterLayer
should have. If None, then the returned layer’s zoom_level will be None.

Returns TiledRasterLayer

getNumPartitions()
Returns the number of partitions set for the wrapped RDD.

Returns The number of partitions.

Return type Int

get_class_histogram()
Creates a Histogram of integer values. Suitable for classification rasters with limited number values. If
only single band is present histogram is returned directly.

Returns Histogram or [Histogram]

get_histogram()
Creates a Histogram for each band in the layer. If only single band is present histogram is returned
directly.

Returns Histogram or [Histogram]

get_min_max()
Returns the maximum and minimum values of all of the rasters in the layer.

Returns (float, float)

get_partition_strategy()
Returns the partitioning strategy if the layer has one.

Returns HashPartitioner or SpatialPartitioner or
SpaceTimePartitionStrategy or None

get_point_values(points, resample_method=None)
Returns the values of the layer at given points.

Note: Only points that are contained within a layer will be sampled. This means that if a point lies on the
southern or eastern boundary of a cell, it will not be sampled.

2.13. geopyspark.geotrellis package 149

GeoPySpark Documentation, Release 0.4.1

Parameters

• or {k (points([shapely.geometry.Point]) – shapely.geometry.Point}): Ei-
ther a list of, or a dictionary whose values are shapely.geometry.Points. If a
dictionary, then the type of its keys does not matter. These points must be in the same
projection as the tiles within the layer.

• resample_method (str or ResampleMethod, optional) – The resampling method to
use before obtaining the point values. If not specified, then None is used.

Note: Not all ResampleMethods can be used to resample point values.
ResampleMethod.NEAREST_NEIGHBOR, ResampleMethod.BILINEAR`,
ResampleMethod.CUBIC_CONVOLUTION, and ResampleMethod.
CUBIC_SPLINE are the only ones that can be used.

Returns

The return type will vary depending on the type of points and the layer_type of the
sampled layer.

If points is a list and the layer_type is SPATIAL: [(shapely.geometry.Point,
[float])]

If points is a list and the layer_type is SPACETIME: [(shapely.geometry.Point,
[(datetime.datetime, [float])])]

If points is a dict and the layer_type is SPATIAL: {k: (shapely.geometry.Point,
[float])}

If points is a dict and the layer_type is SPACETIME: {k:
(shapely.geometry.Point, [(datetime.datetime, [float])])}

The shapely.geometry.Point in all of these returns is the original sampled point
given. The [float] are the sampled values, one for each band. If the layer_type
was SPACETIME, then the timestamp will also be included in the results represented by a
datetime.datetime instance. These times and their associated values will be given as
a list of tuples for each point.

Note: The sampled values will always be returned as floats. Regardless of the
cellType of the layer.

If points was given as a dict then the keys of that dictionary will be the keys in the
returned dict.

get_quantile_breaks(num_breaks)
Returns quantile breaks for this Layer.

Parameters num_breaks (int) – The number of breaks to return.

Returns [float]

get_quantile_breaks_exact_int(num_breaks)
Returns quantile breaks for this Layer. This version uses the FastMapHistogram, which counts exact
integer values. If your layer has too many values, this can cause memory errors.

Parameters num_breaks (int) – The number of breaks to return.

Returns [int]

150 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

isEmpty()
Returns a bool that is True if the layer is empty and False if it is not.

Returns Are there elements within the layer

Return type bool

local_max(value)
Determines the maximum value for each cell of each Tile in the layer.

This method takes a max_constant that is compared to each cell in the layer. If max_constant is
larger, then the resulting cell value will be that value. Otherwise, that cell will retain its original value.

Note: NoData values are handled such that taking the max between a normal value and NoData value
will always result in NoData.

Parameters value (int or float or TiledRasterLayer) – The constant value that will be
compared to each cell. If this is a TiledRasterLayer, then Tiles who share a key will
have each of their cell values compared.

Returns TiledRasterLayer

lookup(col, row)
Return the value(s) in the image of a particular SpatialKey (given by col and row).

Parameters

• col (int) – The SpatialKey column.

• row (int) – The SpatialKey row.

Returns [Tile]

Raises

• ValueError – If using lookup on a non LayerType.SPATIAL
TiledRasterLayer.

• IndexError – If col and row are not within the TiledRasterLayer’s bounds.

map_cells(func)
Maps over the cells of each Tile within the layer with a given function.

Note: This operation first needs to deserialize the wrapped RDD into Python and then serialize the RDD
back into a TiledRasterRDD once the mapping is done. Thus, it is advised to chain together operations
to reduce performance cost.

Parameters func (cells, nd => cells) – A function that takes two arguements:
cells and nd. Where cells is the numpy array and nd is the no_data_value of
the tile. It returns cells which are the new cells values of the tile represented as a numpy
array.

Returns TiledRasterLayer

map_tiles(func)
Maps over each Tile within the layer with a given function.

2.13. geopyspark.geotrellis package 151

GeoPySpark Documentation, Release 0.4.1

Note: This operation first needs to deserialize the wrapped RDD into Python and then serialize the RDD
back into a TiledRasterRDD once the mapping is done. Thus, it is advised to chain together operations
to reduce performance cost.

Parameters func (Tile => Tile) – A function that takes a Tile and returns a Tile.

Returns TiledRasterLayer

mask(geometries, partition_strategy=None, options=RasterizerOptions(includePartial=True, sample-
Type=’PixelIsPoint’))

Masks the TiledRasterLayer so that only values that intersect the geometries will be available.

Parameters

• geometries (shapely.geometry or [shapely.geometry] or
pyspark.RDD[shapely.geometry]) – Either a single, list, or Python RDD
of shapely geometry/ies to mask the layer.

Note: All geometries must be in the same CRS as the TileLayer.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting
layer will have the Partioner specified in the strategy with the with same number of
partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Note: This parameter will only be used if geometries is a pyspark.RDD.

• options (RasterizerOptions, optional) – During the mask operation, rasterization
occurs. These options will change the pixel rasterization behavior. Default behavior is to
include partial pixel intersection and to treat pixels as points.

Note: This parameter will only be used if geometries is a pyspark.RDD.

Returns TiledRasterLayer

merge(partition_strategy=None)
Merges the Tile of each K together to produce a single Tile.

This method will reduce each value by its key within the layer to produce a single (K, V) for every K. In
order to achieve this, each Tile that shares a K is merged together to form a single Tile. This is done by
replacing one Tile’s cells with another’s. Not all cells, if any, may be replaced, however. The following
steps are taken to determine if a cell’s value should be replaced:

1. If the cell contains a NoData value, then it will be replaced.

152 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

2. If no NoData value is set, then a cell with a value of 0 will be replaced.

3. If neither of the above are true, then the cell retain its value.

Parameters

• num_partitions (int, optional) – The number of partitions that the resulting
layer should be partitioned with. If None, then the num_partitions will the number
of partitions the layer curretly has.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions
as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting
layer will have the Partioner specified in the strategy with the with same number of
partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Returns TiledRasterLayer

normalize(new_min, new_max, old_min=None, old_max=None)
Finds the min value that is contained within the given geometry.

Note: If old_max - old_min <= 0 or new_max - new_min <= 0, then the normalization
will fail.

Parameters

• old_min (int or float, optional) – Old minimum. If not given, then the min-
imum value of this layer will be used.

• old_max (int or float, optional) – Old maximum. If not given, then the min-
imum value of this layer will be used.

• new_min (int or float) – New minimum to normalize to.

• new_max (int or float) – New maximum to normalize to.

Returns TiledRasterLayer

partitionBy(partition_strategy=None)
Repartitions the layer using the given partitioning strategy.

Parameters partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer
will have the Partioner specified in the strategy with the with same number of partitions
the source layer had.

2.13. geopyspark.geotrellis package 153

GeoPySpark Documentation, Release 0.4.1

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Returns TiledRasterLayer

persist(storageLevel=StorageLevel(False, True, False, False, 1))
Set this RDD’s storage level to persist its values across operations after the first time it is computed. This
can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no
storage level is specified defaults to (C{MEMORY_ONLY}).

polygonal_max(geometry, data_type)
Finds the max value for each band that is contained within the given geometry.

Parameters

• geometry (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon or bytes) – A Shapely Polygon or MultiPolygon that
represents the area where the summary should be computed; or a WKB representation of
the geometry.

• data_type (type) – The type of the values within the rasters. Can either be int or float.

Returns [int] or [float] depending on data_type.

Raises TypeError – If data_type is not an int or float.

polygonal_mean(geometry)
Finds the mean of all of the values for each band that are contained within the given geometry.

Parameters geometry (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon or bytes) – A Shapely Polygon or MultiPolygon that represents
the area where the summary should be computed; or a WKB representation of the geometry.

Returns [float]

polygonal_min(geometry, data_type)
Finds the min value for each band that is contained within the given geometry.

Parameters

• geometry (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon or bytes) – A Shapely Polygon or MultiPolygon that
represents the area where the summary should be computed; or a WKB representation of
the geometry.

• data_type (type) – The type of the values within the rasters. Can either be int or float.

Returns [int] or [float] depending on data_type.

Raises TypeError – If data_type is not an int or float.

polygonal_sum(geometry, data_type)
Finds the sum of all of the values in each band that are contained within the given geometry.

Parameters

• geometry (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon or bytes) – A Shapely Polygon or MultiPolygon that
represents the area where the summary should be computed; or a WKB representation of
the geometry.

• data_type (type) – The type of the values within the rasters. Can either be int or float.

Returns [int] or [float] depending on data_type.

154 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

Raises TypeError – If data_type is not an int or float.

pyramid(resample_method=<ResampleMethod.NEAREST_NEIGHBOR: ’NearestNeighbor’>, parti-
tion_strategy=None)

Creates a layer Pyramid where the resolution is halved per level.

Parameters

• resample_method (str or ResampleMethod, optional) – The resample
method to use when building the pyramid. Default is ResampleMethods.
NEAREST_NEIGHBOR.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions
as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting
layer will have the Partioner specified in the strategy with the with same number of
partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Returns Pyramid.

Raises ValueError – If this layer layout is not of GlobalLayout type.

reclassify(value_map, data_type, classification_strategy=<ClassificationStrategy.LESS_THAN_OR_EQUAL_TO:
’LessThanOrEqualTo’>, replace_nodata_with=None, fallback_value=None,
strict=False)

Changes the cell values of a raster based on how the data is broken up in the given value_map.

Parameters

• value_map (dict) – A dict whose keys represent values where a break should occur
and its values are the new value the cells within the break should become.

• data_type (type) – The type of the values within the rasters. Can either be int or float.

• classification_strategy (str or ClassificationStrategy , optional)
– How the cells should be classified along the breaks. If unspecified, then
ClassificationStrategy.LESS_THAN_OR_EQUAL_TO will be used.

• replace_nodata_with (int or float, optional) – When remapping val-
ues, NoData values must be treated separately. If NoData values are intended to be
replaced during the reclassify, this variable should be set to the intended value. If unspec-
ified, NoData values will be preserved.

Note: Specifying replace_nodata_with will change the value of given cells, but
the NoData value of the layer will remain unchanged.

• fallback_value (int or float, optional) – Represents the
value that should be used when a cell’s value does not fall within the
classification_strategy. Default is to use the layer’s NoData value.

2.13. geopyspark.geotrellis package 155

GeoPySpark Documentation, Release 0.4.1

• strict (bool, optional) – Determines whether or not an error should be thrown
if a cell’s value does not fall within the classification_strategy. Default is,
False.

Returns TiledRasterLayer

repartition(num_partitions=None)
Repartitions the layer to have a different number of partitions.

Parameters num_partitions (int, optional) – Desired number of partitions. Default
is, None .If None, then the exisiting number of partitions will be used.

Returns TiledRasterLayer

reproject(target_crs, resample_method=<ResampleMethod.NEAREST_NEIGHBOR: ’Nearest-
Neighbor’>)

Reproject rasters to target_crs. The reproject does not sample past tile boundary.

Parameters

• target_crs (str or int) – Target CRS of reprojection. Either EPSG code, well-
known name, or a PROJ.4 string.

• resample_method (str or ResampleMethod, optional) – The resample method
to use for the reprojection. If none is specified, then ResampleMethods.
NEAREST_NEIGHBOR is used.

Returns TiledRasterLayer

save_stitched(path, crop_bounds=None, crop_dimensions=None)
Stitch all of the rasters within the Layer into one raster and then saves it to a given path.

Parameters

• path (str) – The path of the geotiff to save. The path must be on the local file system.

• crop_bounds (Extent, optional) – The sub Extent with which to crop the raster
before saving. If None, then the whole raster will be saved.

• crop_dimensions (tuple(int) or list(int), optional) – cols and
rows of the image to save represented as either a tuple or list. If None then all cols
and rows of the raster will be save.

Note: This can only be used on LayerType.SPATIAL TiledRasterLayers.

Note: If crop_dimensions is set then crop_bounds must also be set.

slope(zfactor_calculator)
Performs the Slope, focal operation on the first band of each Tile in the Layer.

The Slope operation will be carried out in a SQUARE neighborhood with with an extent of 1. A
zfactor will be derived from the zfactor_calculator for each Tile in the Layer. The resulting
Layer will have a cell_type of FLOAT64 regardless of the input Layer’s cell_type; as well as have
a single band, that represents the calculated slope.

Parameters zfactor_calculator (py4j.JavaObject) – A JavaObject that rep-
resents the Scala ZFactorCalculator class. This can be created using either the
zfactor_lat_lng_calculator() or the zfactor_calculator() methods.

Returns TiledRasterLayer

156 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

stitch()
Stitch all of the rasters within the Layer into one raster.

Note: This can only be used on LayerType.SPATIAL TiledRasterLayers.

Returns Tile

tile_to_layout(layout, target_crs=None, resample_method=<ResampleMethod.NEAREST_NEIGHBOR:
’NearestNeighbor’>, partition_strategy=None)

Cut tiles to a given layout and merge overlapping tiles. This will produce unique keys.

Parameters

• layout (LayoutDefinition or Metadata or TiledRasterLayer or
GlobalLayout or LocalLayout) – Target raster layout for the tiling operation.

• target_crs (str or int, optional) – Target CRS of reprojection. Either
EPSG code, well-known name, or a PROJ.4 string. If None, no reproject will be per-
fomed.

• resample_method (str or ResampleMethod, optional) – The resample method
to use for the reprojection. If none is specified, then ResampleMethods.
NEAREST_NEIGHBOR is used.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy or SpaceTimePartitionStrategy , op-
tional) – Sets the Partitioner for the resulting layer and how many partitions it has.
Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions
as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting
layer will have the Partioner specified in the strategy with the with same number of
partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Returns TiledRasterLayer

to_geotiff_rdd(storage_method=<StorageMethod.STRIPED: ’Striped’>, rows_per_strip=None,
tile_dimensions=(256, 256), compression=<Compression.NO_COMPRESSION:
’NoCompression’>, color_space=<ColorSpace.BLACK_IS_ZERO: 1>,
color_map=None, head_tags=None, band_tags=None)

Converts the rasters within this layer to GeoTiffs which are then converted to bytes. This is returned as a
RDD[(K, bytes)]. Where K is either SpatialKey or SpaceTimeKey.

Parameters

• storage_method (str or StorageMethod, optional) – How the segments within the
GeoTiffs should be arranged. Default is StorageMethod.STRIPED.

• rows_per_strip (int, optional) – How many rows should be in each strip seg-
ment of the GeoTiffs if storage_method is StorageMethod.STRIPED. If None,
then the strip size will default to a value that is 8K or less.

• tile_dimensions ((int, int), optional) – The length and width for each
tile segment of the GeoTiff if storage_method is StorageMethod.TILED. If
None then the default size is (256, 256).

2.13. geopyspark.geotrellis package 157

GeoPySpark Documentation, Release 0.4.1

• compression (str or Compression, optional) – How the data should be compressed.
Defaults to Compression.NO_COMPRESSION.

• color_space (str or ColorSpace, optional) – How the colors should be organized in
the GeoTiffs. Defaults to ColorSpace.BLACK_IS_ZERO.

• color_map (ColorMap, optional) – A ColorMap instance used to color the GeoTiffs
to a different gradient.

• head_tags (dict, optional) – A dict where each key and value is a str.

• band_tags (list, optional) – A list of dicts where each key and value is a
str.

• Note – For more information on the contents of the tags, see
www.gdal.org/gdal_datamodel.html

Returns RDD[(K, bytes)]

to_numpy_rdd()
Converts a TiledRasterLayer to a numpy RDD.

Note: Depending on the size of the data stored within the RDD, this can be an exspensive operation and
should be used with caution.

Returns RDD

to_png_rdd(color_map)
Converts the rasters within this layer to PNGs which are then converted to bytes. This is returned as a
RDD[(K, bytes)].

Parameters color_map (ColorMap) – A ColorMap instance used to color the PNGs.

Returns RDD[(K, bytes)]

to_spatial_layer(target_time=None)
Converts a TiledRasterLayer with a layout_type of LayoutType.SPACETIME to a
TiledRasterLayer with a layout_type of LayoutType.SPATIAL.

Parameters target_time (datetime.datetime, optional) – The instance of interest. If
set, the resulting TiledRasterLayer will only contain keys that contained the given
instance. If None, then all values within the layer will be kept.

Returns TiledRasterLayer

Raises ValueError – If the layer already has a layout_type of LayoutType.
SPATIAL.

tobler()
Generates a Tobler walking speed layer from an elevation layer.

Note: This method has a known issue where the Tobler calculation is direction agnostic. Thus, all slopes
are assumed to be uphill. This can result it incorrect results. A fix is currently being worked on.

Returns TiledRasterLayer

unpersist()
Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.

158 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

with_no_data(no_data_value)
Changes the NoData value of the layer with the new given value.

It is possible to specify a NoData value for layers with raw values. The resulting layer will be of the
same CellType but with a user defined NoData value. For example, if a layer has a CellType of
float32raw and a no_data_value of -10 is given, then the produced layer will have a CellType
of float32ud-10.0.

If the target layer has a bool CellType, then the no_data_value will be ignored and the re-
sult layer will be the same as the origin. In order to assign a NoData value to a bool layer, the
convert_data_type() method must be used.

Parameters no_data_value (int or float) – The new NoData value of the layer.

Returns TiledRasterLayer

wrapped_rdds()
Returns the list of RDD-containing objects wrapped by this object. The default implementation assumes
that subclass contains a single RDD container, srdd, which implements the persist() and unpersist() meth-
ods.

class geopyspark.geotrellis.layer.Pyramid(levels)
Contains a list of TiledRasterLayers that make up a tile pyramid. Each layer represents a level within the
pyramid. This class is used when creating a tile server.

Map algebra can performed on instances of this class.

Parameters levels (list or dict) – A list of TiledRasterLayers or a dict of
TiledRasterLayers where the value is the layer itself and the key is its given zoom level.

pysc
pyspark.SparkContext – The SparkContext being used this session.

layer_type (class
~geopyspark.geotrellis.constants.LayerType): What the layer type of the geotiffs are.

levels
dict – A dict of TiledRasterLayers where the value is the layer itself and the key is its given zoom
level.

max_zoom
int – The highest zoom level of the pyramid.

is_cached
bool – Signals whether or not the internal RDDs are cached. Default is False.

histogram
Histogram – The Histogram that represents the layer with the max zoomw. Will not be calculated
unless the get_histogram() method is used. Otherwise, its value is None.

Raises TypeError – If levels is neither a list or dict.

cache()
Persist this RDD with the default storage level (C{MEMORY_ONLY}).

count()
Returns how many elements are within the wrapped RDD.

Returns The number of elements in the RDD.

Return type Int

2.13. geopyspark.geotrellis package 159

GeoPySpark Documentation, Release 0.4.1

getNumPartitions()
Returns the number of partitions set for the wrapped RDD.

Returns The number of partitions.

Return type Int

get_histogram()
Calculates the Histogram for the layer with the max zoom.

Returns Histogram

get_partition_strategy()
Returns the partitioning strategy if the layer has one.

Returns HashPartitioner or SpatialPartitioner or
SpaceTimePartitionStrategy or None

isEmpty()
Returns a bool that is True if the layer is empty and False if it is not.

Returns Are there elements within the layer

Return type bool

persist(storageLevel=StorageLevel(False, True, False, False, 1))
Set this RDD’s storage level to persist its values across operations after the first time it is computed. This
can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no
storage level is specified defaults to (C{MEMORY_ONLY}).

unpersist()
Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.

wrapped_rdds()
Returns a list of the wrapped, Scala RDDs within each layer of the pyramid.

Returns [org.apache.spark.rdd.RDD]

2.13.11 geopyspark.geotrellis.neighborhood module

Classes that represent the various neighborhoods used in focal functions.

Note: Once a parameter has been entered for any one of these classes it gets converted to a float if it was originally
an int.

class geopyspark.geotrellis.neighborhood.Circle(radius)
A circle neighborhood.

Parameters radius (int or float) – The radius of the circle that determines which cells fall
within the bounding box.

radius
int or float – The radius of the circle that determines which cells fall within the bounding box.

param_1
float – Same as radius.

param_2
float – Unused param for Circle. Is 0.0.

160 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

param_3
float – Unused param for Circle. Is 0.0.

name
str – The name of the neighborhood which is, “circle”.

Note: Cells that lie exactly on the radius of the circle are apart of the neighborhood.

class geopyspark.geotrellis.neighborhood.Wedge(radius, start_angle, end_angle)
A wedge neighborhood.

Parameters

• radius (int or float) – The radius of the wedge.

• start_angle (int or float) – The starting angle of the wedge in degrees.

• end_angle (int or float) – The ending angle of the wedge in degrees.

radius
int or float – The radius of the wedge.

start_angle
int or float – The starting angle of the wedge in degrees.

end_angle
int or float – The ending angle of the wedge in degrees.

param_1
float – Same as radius.

param_2
float – Same as start_angle.

param_3
float – Same as end_angle.

name
str – The name of the neighborhood which is, “wedge”.

class geopyspark.geotrellis.neighborhood.Nesw(extent)
A neighborhood that includes a column and row intersection for the focus.

Parameters extent (int or float) – The extent of this neighborhood. This represents the
how many cells past the focus the bounding box goes.

extent
int or float – The extent of this neighborhood. This represents the how many cells past the focus the
bounding box goes.

param_1
float – Same as extent.

param_2
float – Unused param for Nesw. Is 0.0.

param_3
float – Unused param for Nesw. Is 0.0.

name
str – The name of the neighborhood which is, “nesw”.

2.13. geopyspark.geotrellis package 161

GeoPySpark Documentation, Release 0.4.1

class geopyspark.geotrellis.neighborhood.Annulus(inner_radius, outer_radius)
An Annulus neighborhood.

Parameters

• inner_radius (int or float) – The radius of the inner circle.

• outer_radius (int or float) – The radius of the outer circle.

inner_radius
int or float – The radius of the inner circle.

outer_radius
int or float – The radius of the outer circle.

param_1
float – Same as inner_radius.

param_2
float – Same as outer_radius.

param_3
float – Unused param for Annulus. Is 0.0.

name
str – The name of the neighborhood which is, “annulus”.

2.13.12 geopyspark.geotrellis.ProtoBufCodecs module

geopyspark.geotrellis.protobuf
alias of geopyspark.geotrellis.protobuf

2.13.13 geopyspark.geotrellis.ProtoBufSerializer module

class geopyspark.geotrellis.protobufserializer.ProtoBufSerializer(decoding_method,
encod-
ing_method)

The serializer used by a RDD to encode/decode values to/from Python.

Parameters

• decoding_method (func) – The decocding function for the values within the RDD.

• encoding_method (func) – The encocding function for the values within the RDD.

decoding_method
func – The decocding function for the values within the RDD.

encoding_method
func – The encocding function for the values within the RDD.

dumps(obj)
Serialize an object into a byte array.

Note: When batching is used, this will be called with a list of objects.

Parameters obj – The object to serialized into a byte array.

Returns The byte array representation of the obj.

162 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

loads(obj)
Deserializes a byte array into a collection of Python objects.

Parameters obj – The byte array representation of an object to be deserialized into the object.

Returns A list of deserialized objects.

2.13.14 geopyspark.geotrellis.rasterize module

geopyspark.geotrellis.rasterize.rasterize(geoms, crs, zoom, fill_value,
cell_type=<CellType.FLOAT64: ’float64’>,
options=None, partition_strategy=None)

Rasterizes a Shapely geometries.

Parameters

• geoms ([shapely.geometry] or (shapely.geometry) or pyspark.
RDD[shapely.geometry]) – Either a list, tuple, or a Python RDD of shapely
geometries to rasterize.

• crs (str or int) – The CRS of the input geometry.

• zoom (int) – The zoom level of the output raster.

• fill_value (int or float) – Value to burn into pixels intersectiong geometry

• cell_type (str or CellType) – Which data type the cells should be when created. De-
faults to CellType.FLOAT64.

• options (RasterizerOptions, optional) – Pixel intersection options.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy, optional) – Sets the Partitioner for the
resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will have the default Partitioner and a number of pari-
tions that was determined by the method.

If partition_strategy is set but has no num_partitions, then the resulting layer
will have the Partioner specified in the strategy with the with same number of partitions
the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Returns TiledRasterLayer

geopyspark.geotrellis.rasterize.rasterize_features(features, crs, zoom,
cell_type=<CellType.FLOAT64:
’float64’>, options=None, zin-
dex_cell_type=<CellType.INT8:
’int8’>, parti-
tion_strategy=None)

Rasterizes a collection of Features.

Parameters

• features (pyspark.RDD[Feature]) – A Python RDD that contains Features.

Note: The properties of each Feature must be an instance of CellValue.

2.13. geopyspark.geotrellis package 163

GeoPySpark Documentation, Release 0.4.1

• crs (str or int) – The CRS of the input geometry.

• zoom (int) – The zoom level of the output raster.

Note: Not all rasterized Features may be present in the resulting layer if the zoom is not
high enough.

• cell_type (str or CellType) – Which data type the cells should be when created. De-
faults to CellType.FLOAT64.

• options (RasterizerOptions, optional) – Pixel intersection options.

• zindex_cell_type (str or CellType) – Which data type the Z-Index cells are.
Defaults to CellType.INT8.

• partition_strategy (HashPartitionStrategy or
SpatialPartitioinStrategy, optional) – Sets the Partitioner for the
resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will have the default Partitioner and a number of pari-
tions that was determined by the method.

If partition_strategy is set but has no num_partitions, then the resulting layer
will have the Partioner specified in the strategy with the with same number of partitions
the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer
will have the Partioner and number of partitions specified in the strategy.

Returns TiledRasterLayer

2.13.15 geopyspark.geotrellis.tms module

class geopyspark.geotrellis.tms.TileRender(render_function)
A Python implementation of the Scala geopyspark.geotrellis.tms.TileRender interface. Permits a callback from
Scala to Python to allow for custom rendering functions.

Parameters render_function (Tile => PIL.Image.Image) – A function to convert
geopyspark.geotrellis.Tile to a PIL Image.

render_function
Tile => PIL.Image.Image – A function to convert geopyspark.geotrellis.Tile to a PIL Image.

renderEncoded(scala_array)
A function to convert an array to an image.

Parameters scala_array – A linear array of bytes representing the protobuf-encoded con-
tents of a tile

Returns bytes representing an image

class geopyspark.geotrellis.tms.TMS(server)
Provides a TMS server for raster data.

In order to display raster data on a variety of different map interfaces (e.g., leaflet maps, geojson.io, GeoNote-
book, and others), we provide the TMS class.

Parameters server (JavaObject) – The Java TMSServer instance

pysc
pyspark.SparkContext – The SparkContext being used this session.

164 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

server
JavaObject – The Java TMSServer instance

host
str – The IP address of the host, if bound, else None

port
int – The port number of the TMS server, if bound, else None

url_pattern
string – The URI pattern for the current TMS service, with {z}, {x}, {y} tokens. Can be copied directly
to services such as geojson.io.

bind(host=None, requested_port=None)
Starts up a TMS server.

Parameters

• host (str, optional) – The target host. Typically “localhost”, “127.0.0.1”, or
“0.0.0.0”. The latter will make the TMS service accessible from the world. If omitted,
defaults to localhost.

• requested_port (optional, int) – A port number to bind the service to. If omit-
ted, use a random available port.

classmethod build(source, display, allow_overzooming=True)
Builds a TMS server from one or more layers.

This function takes a SparkContext, a source or list of sources, and a display method and creates a TMS
server to display the desired content. The display method is supplied as a ColorMap (only available when
there is a single source), or a callable object which takes either a single tile input (when there is a single
source) or a list of tiles (for multiple sources) and returns the bytes representing an image file for that tile.

Parameters

• source (tuple or orlist or Pyramid) – The tile sources to render. Tuple inputs are (str,
str) pairs where the first component is the URI of a catalog and the second is the layer
name. A list input may be any combination of tuples and Pyramids.

• display (ColorMap, callable) – Method for mapping tiles to images. ColorMap
may only be applied to single input source. Callable will take a single numpy array for
a single source, or a list of numpy arrays for multiple sources. In the case of multiple
inputs, resampling may be required if the tile sources have different tile sizes. Returns
bytes representing the resulting image.

• allow_overzooming (bool) – If set, viewing at zoom levels above the highest avail-
able zoom level will produce tiles that are resampled from the highest zoom level present
in the data set.

host
Returns the IP string of the server’s host if bound, else None.

Returns (str)

port
Returns the port number for the current TMS server if bound, else None.

Returns (int)

unbind()
Shuts down the TMS service, freeing the assigned port.

2.13. geopyspark.geotrellis package 165

GeoPySpark Documentation, Release 0.4.1

url_pattern
Returns the URI for the tiles served by the present server. Contains {z}, {x}, and {y} tokens to be substi-
tuted for the desired zoom and x/y tile position.

Returns (str)

2.13.16 geopyspark.geotrellis.union module

geopyspark.geotrellis.union.union(layers)
Unions togther two or more RasterLayers or TiledRasterLayers.

All layers must have the same layer_type. If the layers are TiledRasterLayers, then all of the layers
must also have the same TileLayout and CRS.

Note: If the layers to be unioned share one or more keys, then the resulting layer will contain duplicates of that
key. One copy for each instance of the key.

Parameters layers ([RasterLayer] or [TiledRasterLayer] or (RasterLayer)
or (TiledRasterLayer)) – A colection of two or more RasterLayers or
TiledRasterLayers layers to be unioned together.

Returns RasterLayer or TiledRasterLayer

2.14 geopyspark.vector_pipe package

class geopyspark.vector_pipe.Feature
Represents a geometry that is derived from an OSM Element with that Element’s associated metadata.

Parameters

• geometry (shapely.geometry) – The geometry of the feature that is represented as
a shapely.geometry. This geometry is derived from an OSM Element.

• properties (Properties or CellValue) – The metadata associated with the OSM
Element. Can be represented as either an instance of Properties or a CellValue.

geometry
shapely.geometry – The geometry of the feature that is represented as a shapely.geometry. This
geometry is derived from an OSM Element.

properties
Properties or CellValue – The metadata associated with the OSM Element. Can be represented as
either an instance of Properties or a CellValue.

count(value)→ integer – return number of occurrences of value

geometry
Alias for field number 0

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

properties
Alias for field number 1

166 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

class geopyspark.vector_pipe.Properties
Represents the metadata of an OSM Element.

This object is one of two types that can be used to represent the properties of a Feature.

Parameters

• element_id (int) – The id of the OSM Element.

• user (str) – The display name of the last user who modified/created the OSM Element.

• uid (int) – The numeric id of the last user who modified the OSM Element.

• changeset (int) – The OSM changeset number in which the OSM Element was
created/modified.

• version (int) – The edit version of the OSM Element.

• minor_version (int) – Represents minor changes between versions of an OSM Ele-
ment.

• timestamp (datetime.datetime) – The time of the last modification to the OSM
Element.

• visible (bool) – Represents whether or not the OSM Element is deleted or not in the
database.

• tags (dict) – A dict of strs that represents the given features of the OSM Element.

element_id
int – The id of the OSM Element.

user
str – The display name of the last user who modified/created the OSM Element.

uid
int – The numeric id of the last user who modified the OSM Element.

changeset
int – The OSM changeset number in which the OSM Element was created/modified.

version
int – The edit version of the OSM Element.

minor_version
int – Represents minor changes between versions of an OSM Element.

timestamp
datetime.datetime – The time of the last modification to the OSM Element.

visible
bool – Represents whether or not the OSM Element is deleted or not in the database.

tags
dict – A dict of strs that represents the given features of the OSM Element.

changeset
Alias for field number 3

count(value)→ integer – return number of occurrences of value

element_id
Alias for field number 0

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

2.14. geopyspark.vector_pipe package 167

GeoPySpark Documentation, Release 0.4.1

minor_version
Alias for field number 5

tags
Alias for field number 8

timestamp
Alias for field number 6

uid
Alias for field number 2

user
Alias for field number 1

version
Alias for field number 4

visible
Alias for field number 7

class geopyspark.vector_pipe.CellValue
Represents the value and zindex of a geometry.

This object is one of two types that can be used to represent the properties of a Feature.

Parameters

• value (int or float) – The value of all cells that intersects the associated geometry.

• zindex (int) – The Z-Index of each cell that intersects the associated geometry.
Z-Index determines which value a cell should be if multiple geometries intersect it. A
high Z-Index will always be in front of a Z-Index of a lower value.

value
int or float – The value of all cells that intersects the associated geometry.

zindex
int – The Z-Index of each cell that intersects the associated geometry. Z-Index determines which
value a cell should be if multiple geometries intersect it. A high Z-Index will always be in front of a
Z-Index of a lower value.

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

value
Alias for field number 0

zindex
Alias for field number 1

2.14.1 geopyspark.vector_pipe.features_collection module

class geopyspark.vector_pipe.features_collection.FeaturesCollection(scala_features)
Represents a collection of features from OSM data. A feature is a geometry that is derived from an OSM
Element with that Element’s associated metadata. These features are grouped together by their geometry
type.

There are 4 different types of geometries that a feature can contain:

• Points

168 Chapter 2. Contact and Support

GeoPySpark Documentation, Release 0.4.1

• Lines

• Polygons

• MultiPolygons

Parameters scala_features (py4j.JavaObject) – The Scala representation of
FeaturesCollection.

scala_features
py4j.JavaObject – The Scala representation of FeaturesCollection.

get_line_features_rdd()
Returns each Line feature in the FeaturesCollection as a Feature in a Python RDD.

Returns RDD[Feature]

get_line_tags()
Returns all of the unique tags for all of the Lines in the FeaturesCollection as a dict. Both the
keys and values of the dict will be strs.

Returns dict

get_multipolygon_features_rdd()
Returns each MultiPolygon feature in the FeaturesCollection as a Feature in a Python
RDD.

Returns RDD[Feature]

get_multipolygon_tags()
Returns all of the unique tags for all of the MultiPolygons in the FeaturesCollection as a dict.
Both the keys and values of the dict will be strs.

Returns dict

get_point_features_rdd()
Returns each Point feature in the FeaturesCollection as a Feature in a Python RDD.

Returns RDD[Feature]

get_point_tags()
Returns all of the unique tags for all of the Points in the FeaturesCollection as a dict. Both the
keys and values of the dict will be strs.

Returns dict

get_polygon_features_rdd()
Returns each Polygon feature in the FeaturesCollection as a Feature in a Python RDD.

Returns RDD[Feature]

get_polygon_tags()
Returns all of the unique tags for all of the Polygons in the FeaturesCollection as a dict. Both
the keys and values of the dict will be strs.

Returns dict

2.14.2 geopyspark.vector_pipe.osm_reader module

geopyspark.vector_pipe.osm_reader.from_orc(source)
Reads in OSM data from an orc file that is located either locally or on S3. The resulting data will be read in as
an instance of FeaturesCollection.

2.14. geopyspark.vector_pipe package 169

GeoPySpark Documentation, Release 0.4.1

Parameters source (str) – The path or URI to the orc file to be read. Can either be a local file,
or a file on S3.

Note: Reading a file from S3 requires additional setup depending on the environment and how
the file is being read.

The following describes the parameters that need to be set depending on how the files are to be
read in. However, if reading a file on EMR, then the access key and secret key do not need
to be set.

If using s3a://, then the following SparkConf parameters need to be set:

• spark.hadoop.fs.s3a.impl

• spark.hadoop.fs.s3a.access.key

• spark.hadoop.fs.s3a.secret.key

If using s3n://, then the following SparkConf parameters need to be set:

• spark.hadoop.fs.s3n.access.key

• spark.hadoop.fs.s3n.secret.key

An alternative to passing in your S3 credentials to SparkConf would be to export them as
environment variables:

• AWS_ACCESS_KEY_ID=YOUR_KEY

• AWS_SECRET_ACCESS_KEY_ID=YOUR_SECRET_KEY

Returns FeaturesCollection

geopyspark.vector_pipe.osm_reader.from_dataframe(dataframe)
Reads OSM data from a Spark DataFrame. The resulting data will be read in as an instance of
FeaturesCollection.

Parameters dataframe (DataFrame) – A Spark DataFrame that contains the OSM data.

Returns FeaturesCollection

170 Chapter 2. Contact and Support

Python Module Index

g
geopyspark, 62
geopyspark.geotrellis.catalog, 124
geopyspark.geotrellis.color, 128
geopyspark.geotrellis.combine_bands, 130
geopyspark.geotrellis.constants, 130
geopyspark.geotrellis.cost_distance, 134
geopyspark.geotrellis.euclidean_distance,

135
geopyspark.geotrellis.geotiff, 135
geopyspark.geotrellis.hillshade, 136
geopyspark.geotrellis.histogram, 137
geopyspark.geotrellis.layer, 138
geopyspark.geotrellis.neighborhood, 160
geopyspark.geotrellis.rasterize, 163
geopyspark.geotrellis.tms, 164
geopyspark.geotrellis.union, 166
geopyspark.vector_pipe.features_collection,

168
geopyspark.vector_pipe.osm_reader, 169

171

GeoPySpark Documentation, Release 0.4.1

172 Python Module Index

Index

A
aggregate_by_cell() (geopys-

park.geotrellis.layer.TiledRasterLayer method),
146

aggregate_by_cell() (geopyspark.TiledRasterLayer
method), 93

Annulus (class in geopyspark), 109
Annulus (class in geopyspark.geotrellis.neighborhood),

161
ANNULUS (geopyspark.geotrellis.constants.Neighborhood

attribute), 132
ANNULUS (geopyspark.Neighborhood attribute), 80
ASPECT (geopyspark.geotrellis.constants.Operation at-

tribute), 131
ASPECT (geopyspark.Operation attribute), 80
AttributeStore (class in geopyspark), 75
AttributeStore (class in geopyspark.geotrellis.catalog),

126
AttributeStore.Attributes (class in geopyspark), 76
AttributeStore.Attributes (class in geopys-

park.geotrellis.catalog), 126
AVERAGE (geopyspark.geotrellis.constants.ResampleMethod

attribute), 131
AVERAGE (geopyspark.ResampleMethod attribute), 79

B
bands() (geopyspark.geotrellis.layer.RasterLayer

method), 139
bands() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 147
bands() (geopyspark.RasterLayer method), 85
bands() (geopyspark.TiledRasterLayer method), 93
BILINEAR (geopyspark.geotrellis.constants.ResampleMethod

attribute), 131
BILINEAR (geopyspark.ResampleMethod attribute), 79
bin_counts() (geopyspark.geotrellis.histogram.Histogram

method), 137
bin_counts() (geopyspark.Histogram method), 84
bind() (geopyspark.geotrellis.tms.TMS method), 165

bind() (geopyspark.TMS method), 111
bits (geopyspark.SpaceTimePartitionStrategy attribute),

73
bits (geopyspark.SpatialPartitionStrategy attribute), 72
BLACK_IS_ZERO (geopyspark.ColorSpace attribute),

82
BLACK_IS_ZERO (geopys-

park.geotrellis.constants.ColorSpace attribute),
133

BLUE_TO_ORANGE (geopyspark.ColorRamp at-
tribute), 81

BLUE_TO_ORANGE (geopys-
park.geotrellis.constants.ColorRamp attribute),
133

BLUE_TO_RED (geopyspark.ColorRamp attribute), 81
BLUE_TO_RED (geopys-

park.geotrellis.constants.ColorRamp attribute),
133

BOOL (geopyspark.CellType attribute), 80
BOOL (geopyspark.geotrellis.constants.CellType at-

tribute), 132
BOOLRAW (geopyspark.CellType attribute), 81
BOOLRAW (geopyspark.geotrellis.constants.CellType

attribute), 132
Bounds (class in geopyspark), 70
Bounds (class in geopyspark.geotrellis), 123
bounds (geopyspark.geotrellis.Metadata attribute), 123
bounds (geopyspark.Metadata attribute), 67
bucket_count() (geopys-

park.geotrellis.histogram.Histogram method),
137

bucket_count() (geopyspark.Histogram method), 84
build() (geopyspark.AttributeStore class method), 76
build() (geopyspark.ColorMap class method), 77
build() (geopyspark.geotrellis.catalog.AttributeStore

class method), 127
build() (geopyspark.geotrellis.color.ColorMap class

method), 128
build() (geopyspark.geotrellis.tms.TMS class method),

165

173

GeoPySpark Documentation, Release 0.4.1

build() (geopyspark.TMS class method), 111

C
cache() (geopyspark.geotrellis.layer.Pyramid method),

159
cache() (geopyspark.geotrellis.layer.RasterLayer

method), 139
cache() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 147
cache() (geopyspark.Pyramid method), 106
cache() (geopyspark.RasterLayer method), 86
cache() (geopyspark.TiledRasterLayer method), 94
cached() (geopyspark.AttributeStore class method), 76
cached() (geopyspark.geotrellis.catalog.AttributeStore

class method), 127
cdf() (geopyspark.geotrellis.histogram.Histogram

method), 137
cdf() (geopyspark.Histogram method), 84
cell_type (geopyspark.geotrellis.Metadata attribute), 124
cell_type (geopyspark.geotrellis.Tile attribute), 116
cell_type (geopyspark.Metadata attribute), 67
cell_type (geopyspark.Tile attribute), 63
cells (geopyspark.geotrellis.Tile attribute), 115, 116
cells (geopyspark.Tile attribute), 63
CellType (class in geopyspark), 80
CellType (class in geopyspark.geotrellis.constants), 132
CellValue (class in geopyspark), 115
CellValue (class in geopyspark.vector_pipe), 168
CFA (geopyspark.ColorSpace attribute), 82
CFA (geopyspark.geotrellis.constants.ColorSpace at-

tribute), 134
changeset (geopyspark.Properties attribute), 114
changeset (geopyspark.vector_pipe.Properties attribute),

167
CIE_LAB (geopyspark.ColorSpace attribute), 82
CIE_LAB (geopyspark.geotrellis.constants.ColorSpace

attribute), 134
Circle (class in geopyspark), 107
Circle (class in geopyspark.geotrellis.neighborhood), 160
CIRCLE (geopyspark.geotrellis.constants.Neighborhood

attribute), 132
CIRCLE (geopyspark.Neighborhood attribute), 80
CLASSIFICATION_BOLD_LAND_USE (geopys-

park.ColorRamp attribute), 81
CLASSIFICATION_BOLD_LAND_USE (geopys-

park.geotrellis.constants.ColorRamp attribute),
133

CLASSIFICATION_MUTED_TERRAIN (geopys-
park.ColorRamp attribute), 81

CLASSIFICATION_MUTED_TERRAIN (geopys-
park.geotrellis.constants.ColorRamp attribute),
133

ClassificationStrategy (class in geopyspark), 80

ClassificationStrategy (class in geopys-
park.geotrellis.constants), 132

cmap (geopyspark.ColorMap attribute), 77
cmap (geopyspark.geotrellis.color.ColorMap attribute),

128
CMYK (geopyspark.ColorSpace attribute), 82
CMYK (geopyspark.geotrellis.constants.ColorSpace at-

tribute), 134
col (geopyspark.geotrellis.SpaceTimeKey attribute), 122
col (geopyspark.geotrellis.SpatialKey attribute), 122
col (geopyspark.SpaceTimeKey attribute), 66, 67
col (geopyspark.SpatialKey attribute), 66
collect_keys() (geopyspark.geotrellis.layer.RasterLayer

method), 139
collect_keys() (geopys-

park.geotrellis.layer.TiledRasterLayer method),
147

collect_keys() (geopyspark.RasterLayer method), 86
collect_keys() (geopyspark.TiledRasterLayer method), 94
collect_metadata() (geopys-

park.geotrellis.layer.RasterLayer method),
139

collect_metadata() (geopyspark.RasterLayer method), 86
ColorMap (class in geopyspark), 77
ColorMap (class in geopyspark.geotrellis.color), 128
ColorRamp (class in geopyspark), 81
ColorRamp (class in geopyspark.geotrellis.constants),

133
ColorSpace (class in geopyspark), 82
ColorSpace (class in geopyspark.geotrellis.constants),

133
combine_bands() (in module geopyspark), 112
combine_bands() (in module geopys-

park.geotrellis.combine_bands), 130
Compression (class in geopyspark), 82
Compression (class in geopyspark.geotrellis.constants),

134
contains() (geopyspark.AttributeStore method), 76
contains() (geopyspark.geotrellis.catalog.AttributeStore

method), 127
convert_data_type() (geopys-

park.geotrellis.layer.RasterLayer method),
139

convert_data_type() (geopys-
park.geotrellis.layer.TiledRasterLayer method),
147

convert_data_type() (geopyspark.RasterLayer method),
86

convert_data_type() (geopyspark.TiledRasterLayer
method), 94

COOLWARM (geopyspark.ColorRamp attribute), 81
COOLWARM (geopys-

park.geotrellis.constants.ColorRamp attribute),
133

174 Index

GeoPySpark Documentation, Release 0.4.1

cost_distance() (in module geopyspark), 82
cost_distance() (in module geopys-

park.geotrellis.cost_distance), 134
count() (geopyspark.Bounds method), 70
count() (geopyspark.CellValue method), 115
count() (geopyspark.Extent method), 64
count() (geopyspark.Feature method), 113
count() (geopyspark.geotrellis.Bounds method), 123
count() (geopyspark.geotrellis.Extent method), 117
count() (geopyspark.geotrellis.GlobalLayout method),

119
count() (geopyspark.geotrellis.layer.Pyramid method),

159
count() (geopyspark.geotrellis.layer.RasterLayer

method), 140
count() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 147
count() (geopyspark.geotrellis.LayoutDefinition method),

121
count() (geopyspark.geotrellis.LocalLayout method), 120
count() (geopyspark.geotrellis.ProjectedExtent method),

118
count() (geopyspark.geotrellis.RasterizerOptions

method), 123
count() (geopyspark.geotrellis.SpaceTimeKey method),

122
count() (geopyspark.geotrellis.SpatialKey method), 122
count() (geopyspark.geotrellis.TemporalProjectedExtent

method), 118
count() (geopyspark.geotrellis.Tile method), 116
count() (geopyspark.geotrellis.TileLayout method), 121
count() (geopyspark.GlobalLayout method), 69
count() (geopyspark.HashPartitionStrategy method), 71
count() (geopyspark.LayoutDefinition method), 70
count() (geopyspark.LocalLayout method), 69
count() (geopyspark.ProjectedExtent method), 65
count() (geopyspark.Properties method), 114
count() (geopyspark.Pyramid method), 107
count() (geopyspark.RasterizerOptions method), 71
count() (geopyspark.RasterLayer method), 86
count() (geopyspark.SpaceTimeKey method), 67
count() (geopyspark.SpaceTimePartitionStrategy

method), 73
count() (geopyspark.SpatialKey method), 66
count() (geopyspark.SpatialPartitionStrategy method), 72
count() (geopyspark.TemporalProjectedExtent method),

66
count() (geopyspark.Tile method), 63
count() (geopyspark.TiledRasterLayer method), 94
count() (geopyspark.TileLayout method), 68
count() (geopyspark.vector_pipe.CellValue method), 168
count() (geopyspark.vector_pipe.Feature method), 166
count() (geopyspark.vector_pipe.Properties method), 167
crs (geopyspark.geotrellis.Metadata attribute), 123

crs (geopyspark.Metadata attribute), 67
CUBIC_CONVOLUTION (geopys-

park.geotrellis.constants.ResampleMethod
attribute), 131

CUBIC_CONVOLUTION (geopys-
park.ResampleMethod attribute), 79

CUBIC_SPLINE (geopys-
park.geotrellis.constants.ResampleMethod
attribute), 131

CUBIC_SPLINE (geopyspark.ResampleMethod at-
tribute), 79

D
data_type (geopyspark.geotrellis.Tile attribute), 115
data_type (geopyspark.Tile attribute), 63
DAYS (geopyspark.geotrellis.constants.TimeUnit at-

tribute), 131
DAYS (geopyspark.TimeUnit attribute), 80
decoding_method (geopys-

park.geotrellis.protobufserializer.ProtoBufSerializer
attribute), 162

DEFAULT_CHUNK_SIZE (in module geopys-
park.geotrellis.constants), 133

DEFAULT_GEOTIFF_TIME_FORMAT (in module
geopyspark.geotrellis.constants), 133

DEFAULT_GEOTIFF_TIME_TAG (in module geopys-
park.geotrellis.constants), 133

DEFAULT_MAX_TILE_SIZE (in module geopys-
park.geotrellis.constants), 133

DEFAULT_PARTITION_BYTES (in module geopys-
park.geotrellis.constants), 133

DEFLATE_COMPRESSION (geopyspark.Compression
attribute), 82

DEFLATE_COMPRESSION (geopys-
park.geotrellis.constants.Compression at-
tribute), 134

delete() (geopyspark.AttributeStore method), 76
delete() (geopyspark.AttributeStore.Attributes method),

76
delete() (geopyspark.geotrellis.catalog.AttributeStore

method), 127
delete() (geopyspark.geotrellis.catalog.AttributeStore.Attributes

method), 127
dtype_to_cell_type() (geopyspark.geotrellis.Tile static

method), 116
dtype_to_cell_type() (geopyspark.Tile static method), 63
dumps() (geopyspark.geotrellis.protobufserializer.ProtoBufSerializer

method), 162

E
element_id (geopyspark.Properties attribute), 114
element_id (geopyspark.vector_pipe.Properties attribute),

167

Index 175

GeoPySpark Documentation, Release 0.4.1

encoding_method (geopys-
park.geotrellis.protobufserializer.ProtoBufSerializer
attribute), 162

end_angle (geopyspark.geotrellis.neighborhood.Wedge
attribute), 161

end_angle (geopyspark.Wedge attribute), 108
epsg (geopyspark.geotrellis.ProjectedExtent attribute),

117, 118
epsg (geopyspark.geotrellis.TemporalProjectedExtent at-

tribute), 118
epsg (geopyspark.ProjectedExtent attribute), 65
epsg (geopyspark.TemporalProjectedExtent attribute), 65,

66
euclidean_distance() (in module geopyspark), 83
euclidean_distance() (in module geopys-

park.geotrellis.euclidean_distance), 135
EXACT (geopyspark.ClassificationStrategy attribute), 80
EXACT (geopyspark.geotrellis.constants.ClassificationStrategy

attribute), 132
Extent (class in geopyspark), 64
Extent (class in geopyspark.geotrellis), 116
extent (geopyspark.geotrellis.LayoutDefinition attribute),

121
extent (geopyspark.geotrellis.Metadata attribute), 124
extent (geopyspark.geotrellis.neighborhood.Nesw at-

tribute), 161
extent (geopyspark.geotrellis.ProjectedExtent attribute),

117, 118
extent (geopyspark.geotrellis.TemporalProjectedExtent

attribute), 118
extent (geopyspark.LayoutDefinition attribute), 70
extent (geopyspark.Metadata attribute), 67
extent (geopyspark.Nesw attribute), 108
extent (geopyspark.ProjectedExtent attribute), 65
extent (geopyspark.TemporalProjectedExtent attribute),

65, 66

F
Feature (class in geopyspark), 113
Feature (class in geopyspark.vector_pipe), 166
FeaturesCollection (class in geopys-

park.vector_pipe.features_collection), 168
FEET (geopyspark.geotrellis.constants.Unit attribute),

134
FEET (geopyspark.Unit attribute), 82
filter_by_times() (geopys-

park.geotrellis.layer.RasterLayer method),
140

filter_by_times() (geopys-
park.geotrellis.layer.TiledRasterLayer method),
147

filter_by_times() (geopyspark.RasterLayer method), 86
filter_by_times() (geopyspark.TiledRasterLayer method),

94

FLOAT32 (geopyspark.CellType attribute), 81
FLOAT32 (geopyspark.geotrellis.constants.CellType at-

tribute), 132
FLOAT32RAW (geopyspark.CellType attribute), 81
FLOAT32RAW (geopys-

park.geotrellis.constants.CellType attribute),
132

FLOAT64 (geopyspark.CellType attribute), 81
FLOAT64 (geopyspark.geotrellis.constants.CellType at-

tribute), 132
FLOAT64RAW (geopyspark.CellType attribute), 81
FLOAT64RAW (geopys-

park.geotrellis.constants.CellType attribute),
132

focal() (geopyspark.geotrellis.layer.TiledRasterLayer
method), 148

focal() (geopyspark.TiledRasterLayer method), 94
from_break_map() (geopyspark.ColorMap class method),

78
from_break_map() (geopys-

park.geotrellis.color.ColorMap class method),
128

from_colors() (geopyspark.ColorMap class method), 78
from_colors() (geopyspark.geotrellis.color.ColorMap

class method), 129
from_dataframe() (in module geopys-

park.vector_pipe.osm_reader), 170
from_dict() (geopyspark.geotrellis.histogram.Histogram

class method), 137
from_dict() (geopyspark.geotrellis.Metadata class

method), 124
from_dict() (geopyspark.Histogram class method), 84
from_dict() (geopyspark.Metadata class method), 67
from_histogram() (geopyspark.ColorMap class method),

78
from_histogram() (geopyspark.geotrellis.color.ColorMap

class method), 129
from_numpy_array() (geopyspark.geotrellis.Tile class

method), 116
from_numpy_array() (geopyspark.Tile class method), 63
from_numpy_rdd() (geopys-

park.geotrellis.layer.RasterLayer class method),
140

from_numpy_rdd() (geopys-
park.geotrellis.layer.TiledRasterLayer class
method), 149

from_numpy_rdd() (geopyspark.RasterLayer class
method), 87

from_numpy_rdd() (geopyspark.TiledRasterLayer class
method), 95

from_orc() (in module geopys-
park.vector_pipe.osm_reader), 169

from_polygon() (geopyspark.Extent class method), 64
from_polygon() (geopyspark.geotrellis.Extent class

176 Index

GeoPySpark Documentation, Release 0.4.1

method), 117

G
geometry (geopyspark.Feature attribute), 113
geometry (geopyspark.vector_pipe.Feature attribute), 166
geopyspark (module), 62
geopyspark.geotrellis.catalog (module), 124
geopyspark.geotrellis.color (module), 128
geopyspark.geotrellis.combine_bands (module), 130
geopyspark.geotrellis.constants (module), 130
geopyspark.geotrellis.cost_distance (module), 134
geopyspark.geotrellis.euclidean_distance (module), 135
geopyspark.geotrellis.geotiff (module), 135
geopyspark.geotrellis.hillshade (module), 136
geopyspark.geotrellis.histogram (module), 137
geopyspark.geotrellis.layer (module), 138
geopyspark.geotrellis.neighborhood (module), 160
geopyspark.geotrellis.rasterize (module), 163
geopyspark.geotrellis.tms (module), 164
geopyspark.geotrellis.union (module), 166
geopyspark.vector_pipe.features_collection (module),

168
geopyspark.vector_pipe.osm_reader (module), 169
geopyspark_conf() (in module geopyspark), 62
get() (in module geopyspark.geotrellis.geotiff), 135
get_class_histogram() (geopys-

park.geotrellis.layer.RasterLayer method),
140

get_class_histogram() (geopys-
park.geotrellis.layer.TiledRasterLayer method),
149

get_class_histogram() (geopyspark.RasterLayer method),
87

get_class_histogram() (geopyspark.TiledRasterLayer
method), 96

get_colors_from_colors() (in module geopyspark), 77
get_colors_from_colors() (in module geopys-

park.geotrellis.color), 128
get_colors_from_matplotlib() (in module geopyspark), 77
get_colors_from_matplotlib() (in module geopys-

park.geotrellis.color), 128
get_histogram() (geopyspark.geotrellis.layer.Pyramid

method), 160
get_histogram() (geopyspark.geotrellis.layer.RasterLayer

method), 141
get_histogram() (geopys-

park.geotrellis.layer.TiledRasterLayer method),
149

get_histogram() (geopyspark.Pyramid method), 107
get_histogram() (geopyspark.RasterLayer method), 87
get_histogram() (geopyspark.TiledRasterLayer method),

96
get_line_features_rdd() (geopys-

park.vector_pipe.features_collection.FeaturesCollection

method), 169
get_line_tags() (geopys-

park.vector_pipe.features_collection.FeaturesCollection
method), 169

get_min_max() (geopyspark.geotrellis.layer.RasterLayer
method), 141

get_min_max() (geopys-
park.geotrellis.layer.TiledRasterLayer method),
149

get_min_max() (geopyspark.RasterLayer method), 87
get_min_max() (geopyspark.TiledRasterLayer method),

96
get_multipolygon_features_rdd() (geopys-

park.vector_pipe.features_collection.FeaturesCollection
method), 169

get_multipolygon_tags() (geopys-
park.vector_pipe.features_collection.FeaturesCollection
method), 169

get_partition_strategy() (geopys-
park.geotrellis.layer.Pyramid method), 160

get_partition_strategy() (geopys-
park.geotrellis.layer.RasterLayer method),
141

get_partition_strategy() (geopys-
park.geotrellis.layer.TiledRasterLayer method),
149

get_partition_strategy() (geopyspark.Pyramid method),
107

get_partition_strategy() (geopyspark.RasterLayer
method), 87

get_partition_strategy() (geopyspark.TiledRasterLayer
method), 96

get_point_features_rdd() (geopys-
park.vector_pipe.features_collection.FeaturesCollection
method), 169

get_point_tags() (geopys-
park.vector_pipe.features_collection.FeaturesCollection
method), 169

get_point_values() (geopys-
park.geotrellis.layer.TiledRasterLayer method),
149

get_point_values() (geopyspark.TiledRasterLayer
method), 96

get_polygon_features_rdd() (geopys-
park.vector_pipe.features_collection.FeaturesCollection
method), 169

get_polygon_tags() (geopys-
park.vector_pipe.features_collection.FeaturesCollection
method), 169

get_quantile_breaks() (geopys-
park.geotrellis.layer.RasterLayer method),
141

get_quantile_breaks() (geopys-
park.geotrellis.layer.TiledRasterLayer method),

Index 177

GeoPySpark Documentation, Release 0.4.1

150
get_quantile_breaks() (geopyspark.RasterLayer method),

87
get_quantile_breaks() (geopyspark.TiledRasterLayer

method), 97
get_quantile_breaks_exact_int() (geopys-

park.geotrellis.layer.RasterLayer method),
141

get_quantile_breaks_exact_int() (geopys-
park.geotrellis.layer.TiledRasterLayer method),
150

get_quantile_breaks_exact_int() (geopys-
park.RasterLayer method), 88

get_quantile_breaks_exact_int() (geopys-
park.TiledRasterLayer method), 97

getNumPartitions() (geopyspark.geotrellis.layer.Pyramid
method), 159

getNumPartitions() (geopys-
park.geotrellis.layer.RasterLayer method),
140

getNumPartitions() (geopys-
park.geotrellis.layer.TiledRasterLayer method),
149

getNumPartitions() (geopyspark.Pyramid method), 107
getNumPartitions() (geopyspark.RasterLayer method), 87
getNumPartitions() (geopyspark.TiledRasterLayer

method), 96
GlobalLayout (class in geopyspark), 68
GlobalLayout (class in geopyspark.geotrellis), 118
GREATER_THAN (geopyspark.ClassificationStrategy

attribute), 80
GREATER_THAN (geopys-

park.geotrellis.constants.ClassificationStrategy
attribute), 132

GREATER_THAN_OR_EQUAL_TO (geopys-
park.ClassificationStrategy attribute), 80

GREATER_THAN_OR_EQUAL_TO (geopys-
park.geotrellis.constants.ClassificationStrategy
attribute), 132

GREEN_TO_RED_ORANGE (geopyspark.ColorRamp
attribute), 81

GREEN_TO_RED_ORANGE (geopys-
park.geotrellis.constants.ColorRamp attribute),
133

H
HashPartitionStrategy (class in geopyspark), 71
HEATMAP_BLUE_TO_YELLOW_TO_RED_SPECTRUM

(geopyspark.ColorRamp attribute), 81
HEATMAP_BLUE_TO_YELLOW_TO_RED_SPECTRUM

(geopyspark.geotrellis.constants.ColorRamp
attribute), 133

HEATMAP_DARK_RED_TO_YELLOW_WHITE
(geopyspark.ColorRamp attribute), 81

HEATMAP_DARK_RED_TO_YELLOW_WHITE
(geopyspark.geotrellis.constants.ColorRamp
attribute), 133

HEATMAP_LIGHT_PURPLE_TO_DARK_PURPLE_TO_WHITE
(geopyspark.ColorRamp attribute), 81

HEATMAP_LIGHT_PURPLE_TO_DARK_PURPLE_TO_WHITE
(geopyspark.geotrellis.constants.ColorRamp
attribute), 133

HEATMAP_YELLOW_TO_RED (geopys-
park.ColorRamp attribute), 81

HEATMAP_YELLOW_TO_RED (geopys-
park.geotrellis.constants.ColorRamp attribute),
133

HILBERT (geopyspark.geotrellis.constants.IndexingMethod
attribute), 131

HILBERT (geopyspark.IndexingMethod attribute), 79
hillshade() (in module geopyspark), 83
hillshade() (in module geopyspark.geotrellis.hillshade),

136
Histogram (class in geopyspark), 83
Histogram (class in geopyspark.geotrellis.histogram), 137
histogram (geopyspark.geotrellis.layer.Pyramid at-

tribute), 159
histogram (geopyspark.Pyramid attribute), 106, 107
histogram_series() (geopyspark.TiledRasterLayer

method), 97
host (geopyspark.geotrellis.tms.TMS attribute), 165
host (geopyspark.TMS attribute), 111, 112
Hot (geopyspark.ColorRamp attribute), 81
Hot (geopyspark.geotrellis.constants.ColorRamp at-

tribute), 133
HOURS (geopyspark.geotrellis.constants.TimeUnit at-

tribute), 131
HOURS (geopyspark.TimeUnit attribute), 80

I
ICC_LAB (geopyspark.ColorSpace attribute), 82
ICC_LAB (geopyspark.geotrellis.constants.ColorSpace

attribute), 134
implements (geopyspark.TileRender.Java attribute), 111
includePartial (geopyspark.geotrellis.RasterizerOptions

attribute), 122, 123
includePartial (geopyspark.RasterizerOptions attribute),

71
index() (geopyspark.Bounds method), 70
index() (geopyspark.CellValue method), 115
index() (geopyspark.Extent method), 64
index() (geopyspark.Feature method), 113
index() (geopyspark.geotrellis.Bounds method), 123
index() (geopyspark.geotrellis.Extent method), 117
index() (geopyspark.geotrellis.GlobalLayout method),

119
index() (geopyspark.geotrellis.LayoutDefinition method),

121

178 Index

GeoPySpark Documentation, Release 0.4.1

index() (geopyspark.geotrellis.LocalLayout method), 120
index() (geopyspark.geotrellis.ProjectedExtent method),

118
index() (geopyspark.geotrellis.RasterizerOptions

method), 123
index() (geopyspark.geotrellis.SpaceTimeKey method),

122
index() (geopyspark.geotrellis.SpatialKey method), 122
index() (geopyspark.geotrellis.TemporalProjectedExtent

method), 118
index() (geopyspark.geotrellis.Tile method), 116
index() (geopyspark.geotrellis.TileLayout method), 121
index() (geopyspark.GlobalLayout method), 69
index() (geopyspark.HashPartitionStrategy method), 71
index() (geopyspark.LayoutDefinition method), 70
index() (geopyspark.LocalLayout method), 69
index() (geopyspark.ProjectedExtent method), 65
index() (geopyspark.Properties method), 114
index() (geopyspark.RasterizerOptions method), 71
index() (geopyspark.SpaceTimeKey method), 67
index() (geopyspark.SpaceTimePartitionStrategy

method), 73
index() (geopyspark.SpatialKey method), 66
index() (geopyspark.SpatialPartitionStrategy method), 72
index() (geopyspark.TemporalProjectedExtent method),

66
index() (geopyspark.Tile method), 64
index() (geopyspark.TileLayout method), 68
index() (geopyspark.vector_pipe.CellValue method), 168
index() (geopyspark.vector_pipe.Feature method), 166
index() (geopyspark.vector_pipe.Properties method), 167
IndexingMethod (class in geopyspark), 79
IndexingMethod (class in geopys-

park.geotrellis.constants), 131
INFERNO (geopyspark.ColorRamp attribute), 81
INFERNO (geopyspark.geotrellis.constants.ColorRamp

attribute), 133
inner_radius (geopyspark.Annulus attribute), 109
inner_radius (geopyspark.geotrellis.neighborhood.Annulus

attribute), 162
instant (geopyspark.geotrellis.SpaceTimeKey attribute),

122
instant (geopyspark.geotrellis.TemporalProjectedExtent

attribute), 118
instant (geopyspark.SpaceTimeKey attribute), 67
instant (geopyspark.TemporalProjectedExtent attribute),

65, 66
INT16 (geopyspark.CellType attribute), 81
INT16 (geopyspark.geotrellis.constants.CellType at-

tribute), 132
INT16RAW (geopyspark.CellType attribute), 81
INT16RAW (geopyspark.geotrellis.constants.CellType

attribute), 132
INT32 (geopyspark.CellType attribute), 81

INT32 (geopyspark.geotrellis.constants.CellType at-
tribute), 132

INT32RAW (geopyspark.CellType attribute), 81
INT32RAW (geopyspark.geotrellis.constants.CellType

attribute), 132
INT8 (geopyspark.CellType attribute), 81
INT8 (geopyspark.geotrellis.constants.CellType at-

tribute), 132
INT8RAW (geopyspark.CellType attribute), 81
INT8RAW (geopyspark.geotrellis.constants.CellType at-

tribute), 132
is_cached (geopyspark.geotrellis.layer.Pyramid attribute),

159
is_cached (geopyspark.Pyramid attribute), 106, 107
is_floating_point_layer (geopys-

park.geotrellis.layer.TiledRasterLayer at-
tribute), 146

is_floating_point_layer (geopyspark.TiledRasterLayer at-
tribute), 93

isEmpty() (geopyspark.geotrellis.layer.Pyramid method),
160

isEmpty() (geopyspark.geotrellis.layer.RasterLayer
method), 141

isEmpty() (geopyspark.geotrellis.layer.TiledRasterLayer
method), 150

isEmpty() (geopyspark.Pyramid method), 107
isEmpty() (geopyspark.RasterLayer method), 88
isEmpty() (geopyspark.TiledRasterLayer method), 97
item_count() (geopyspark.geotrellis.histogram.Histogram

method), 137
item_count() (geopyspark.Histogram method), 84
ITU_LAB (geopyspark.ColorSpace attribute), 82
ITU_LAB (geopyspark.geotrellis.constants.ColorSpace

attribute), 134

L
LANCZOS (geopyspark.geotrellis.constants.ResampleMethod

attribute), 131
LANCZOS (geopyspark.ResampleMethod attribute), 79
layer() (geopyspark.AttributeStore method), 76
layer() (geopyspark.geotrellis.catalog.AttributeStore

method), 127
layer_metadata (geopys-

park.geotrellis.layer.TiledRasterLayer at-
tribute), 146

layer_metadata (geopyspark.TiledRasterLayer attribute),
93

layer_metadata() (geopyspark.AttributeStore.Attributes
method), 76

layer_type (geopyspark.geotrellis.layer.RasterLayer at-
tribute), 139

layer_type (geopyspark.geotrellis.layer.TiledRasterLayer
attribute), 146

layer_type (geopyspark.Pyramid attribute), 107

Index 179

GeoPySpark Documentation, Release 0.4.1

layer_type (geopyspark.RasterLayer attribute), 85, 88
layer_type (geopyspark.TiledRasterLayer attribute), 93,

97
layers() (geopyspark.AttributeStore method), 76
layers() (geopyspark.geotrellis.catalog.AttributeStore

method), 127
LayerType (class in geopyspark), 79
LayerType (class in geopyspark.geotrellis.constants), 130
layout_definition (geopyspark.geotrellis.Metadata at-

tribute), 124
layout_definition (geopyspark.Metadata attribute), 67
layoutCols (geopyspark.geotrellis.TileLayout attribute),

121
layoutCols (geopyspark.TileLayout attribute), 68
LayoutDefinition (class in geopyspark), 70
LayoutDefinition (class in geopyspark.geotrellis), 121
layoutRows (geopyspark.geotrellis.TileLayout attribute),

121
layoutRows (geopyspark.TileLayout attribute), 68
LESS_THAN (geopyspark.ClassificationStrategy at-

tribute), 80
LESS_THAN (geopys-

park.geotrellis.constants.ClassificationStrategy
attribute), 132

LESS_THAN_OR_EQUAL_TO (geopys-
park.ClassificationStrategy attribute), 80

LESS_THAN_OR_EQUAL_TO (geopys-
park.geotrellis.constants.ClassificationStrategy
attribute), 132

levels (geopyspark.geotrellis.layer.Pyramid attribute),
159

levels (geopyspark.Pyramid attribute), 106, 107
LIGHT_TO_DARK_GREEN (geopyspark.ColorRamp

attribute), 81
LIGHT_TO_DARK_GREEN (geopys-

park.geotrellis.constants.ColorRamp attribute),
133

LIGHT_TO_DARK_SUNSET (geopyspark.ColorRamp
attribute), 81

LIGHT_TO_DARK_SUNSET (geopys-
park.geotrellis.constants.ColorRamp attribute),
133

LIGHT_YELLOW_TO_ORANGE (geopys-
park.ColorRamp attribute), 81

LIGHT_YELLOW_TO_ORANGE (geopys-
park.geotrellis.constants.ColorRamp attribute),
133

LINEAR_RAW (geopyspark.ColorSpace attribute), 82
LINEAR_RAW (geopys-

park.geotrellis.constants.ColorSpace attribute),
134

loads() (geopyspark.geotrellis.protobufserializer.ProtoBufSerializer
method), 163

local_max() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 151
local_max() (geopyspark.TiledRasterLayer method), 97
LocalLayout (class in geopyspark), 69
LocalLayout (class in geopyspark.geotrellis), 119, 120
LOG_L (geopyspark.ColorSpace attribute), 82
LOG_L (geopyspark.geotrellis.constants.ColorSpace at-

tribute), 134
LOG_LUV (geopyspark.ColorSpace attribute), 82
LOG_LUV (geopyspark.geotrellis.constants.ColorSpace

attribute), 134
lookup() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 151
lookup() (geopyspark.TiledRasterLayer method), 98

M
MAGMA (geopyspark.ColorRamp attribute), 81
MAGMA (geopyspark.geotrellis.constants.ColorRamp

attribute), 133
map_cells() (geopyspark.geotrellis.layer.RasterLayer

method), 141
map_cells() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 151
map_cells() (geopyspark.RasterLayer method), 88
map_cells() (geopyspark.TiledRasterLayer method), 98
map_tiles() (geopyspark.geotrellis.layer.RasterLayer

method), 141
map_tiles() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 151
map_tiles() (geopyspark.RasterLayer method), 88
map_tiles() (geopyspark.TiledRasterLayer method), 98
mask() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 152
mask() (geopyspark.TiledRasterLayer method), 98
MAX (geopyspark.geotrellis.constants.Operation at-

tribute), 131
MAX (geopyspark.geotrellis.constants.ResampleMethod

attribute), 131
MAX (geopyspark.Operation attribute), 80
MAX (geopyspark.ResampleMethod attribute), 79
max() (geopyspark.geotrellis.histogram.Histogram

method), 137
max() (geopyspark.Histogram method), 84
max_series() (geopyspark.TiledRasterLayer method), 99
max_zoom (geopyspark.geotrellis.layer.Pyramid at-

tribute), 159
max_zoom (geopyspark.Pyramid attribute), 106, 107
maxKey (geopyspark.Bounds attribute), 70
maxKey (geopyspark.geotrellis.Bounds attribute), 123
MEAN (geopyspark.geotrellis.constants.Operation

attribute), 132
MEAN (geopyspark.Operation attribute), 80
mean() (geopyspark.geotrellis.histogram.Histogram

method), 137
mean() (geopyspark.Histogram method), 84

180 Index

GeoPySpark Documentation, Release 0.4.1

mean_series() (geopyspark.TiledRasterLayer method), 99
MEDIAN (geopyspark.geotrellis.constants.Operation at-

tribute), 132
MEDIAN (geopyspark.geotrellis.constants.ResampleMethod

attribute), 131
MEDIAN (geopyspark.Operation attribute), 80
MEDIAN (geopyspark.ResampleMethod attribute), 79
median() (geopyspark.geotrellis.histogram.Histogram

method), 137
median() (geopyspark.Histogram method), 84
merge() (geopyspark.geotrellis.histogram.Histogram

method), 138
merge() (geopyspark.geotrellis.layer.RasterLayer

method), 142
merge() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 152
merge() (geopyspark.Histogram method), 84
merge() (geopyspark.RasterLayer method), 88
merge() (geopyspark.TiledRasterLayer method), 99
Metadata (class in geopyspark), 67
Metadata (class in geopyspark.geotrellis), 123
METERS (geopyspark.geotrellis.constants.Unit at-

tribute), 134
METERS (geopyspark.Unit attribute), 82
MILLIS (geopyspark.geotrellis.constants.TimeUnit at-

tribute), 131
MILLIS (geopyspark.TimeUnit attribute), 80
MIN (geopyspark.geotrellis.constants.Operation at-

tribute), 132
MIN (geopyspark.geotrellis.constants.ResampleMethod

attribute), 131
MIN (geopyspark.Operation attribute), 80
MIN (geopyspark.ResampleMethod attribute), 79
min() (geopyspark.geotrellis.histogram.Histogram

method), 138
min() (geopyspark.Histogram method), 84
min_max() (geopyspark.geotrellis.histogram.Histogram

method), 138
min_max() (geopyspark.Histogram method), 84
min_series() (geopyspark.TiledRasterLayer method), 100
minKey (geopyspark.Bounds attribute), 70
minKey (geopyspark.geotrellis.Bounds attribute), 123
minor_version (geopyspark.Properties attribute), 114
minor_version (geopyspark.vector_pipe.Properties

attribute), 167
MINUTES (geopyspark.geotrellis.constants.TimeUnit at-

tribute), 131
MINUTES (geopyspark.TimeUnit attribute), 80
MODE (geopyspark.geotrellis.constants.Operation

attribute), 132
MODE (geopyspark.geotrellis.constants.ResampleMethod

attribute), 131
MODE (geopyspark.Operation attribute), 80
MODE (geopyspark.ResampleMethod attribute), 79

mode() (geopyspark.geotrellis.histogram.Histogram
method), 138

mode() (geopyspark.Histogram method), 85
MONTHS (geopyspark.geotrellis.constants.TimeUnit at-

tribute), 131
MONTHS (geopyspark.TimeUnit attribute), 80

N
name (geopyspark.Annulus attribute), 109
name (geopyspark.Circle attribute), 108
name (geopyspark.geotrellis.neighborhood.Annulus at-

tribute), 162
name (geopyspark.geotrellis.neighborhood.Circle at-

tribute), 161
name (geopyspark.geotrellis.neighborhood.Nesw at-

tribute), 161
name (geopyspark.geotrellis.neighborhood.Wedge

attribute), 161
name (geopyspark.Nesw attribute), 109
name (geopyspark.Wedge attribute), 108
NEAREST_NEIGHBOR (geopys-

park.geotrellis.constants.ResampleMethod
attribute), 131

NEAREST_NEIGHBOR (geopyspark.ResampleMethod
attribute), 79

Neighborhood (class in geopyspark), 80
Neighborhood (class in geopyspark.geotrellis.constants),

132
Nesw (class in geopyspark), 108
Nesw (class in geopyspark.geotrellis.neighborhood), 161
NESW (geopyspark.geotrellis.constants.Neighborhood

attribute), 132
NESW (geopyspark.Neighborhood attribute), 80
nlcd_colormap() (geopyspark.ColorMap static method),

79
nlcd_colormap() (geopyspark.geotrellis.color.ColorMap

static method), 130
NO_COMPRESSION (geopyspark.Compression at-

tribute), 82
NO_COMPRESSION (geopys-

park.geotrellis.constants.Compression at-
tribute), 134

NO_DATA_INT (in module geopys-
park.geotrellis.constants), 130

no_data_value (geopyspark.geotrellis.Metadata attribute),
124

no_data_value (geopyspark.geotrellis.Tile attribute), 115,
116

no_data_value (geopyspark.Metadata attribute), 67
no_data_value (geopyspark.Tile attribute), 63, 64
normalize() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 153
normalize() (geopyspark.TiledRasterLayer method), 100

Index 181

GeoPySpark Documentation, Release 0.4.1

num_partitions (geopyspark.HashPartitionStrategy
attribute), 71

num_partitions (geopyspark.SpaceTimePartitionStrategy
attribute), 73

num_partitions (geopyspark.SpatialPartitionStrategy at-
tribute), 72

O
Operation (class in geopyspark), 80
Operation (class in geopyspark.geotrellis.constants), 131
outer_radius (geopyspark.Annulus attribute), 109
outer_radius (geopyspark.geotrellis.neighborhood.Annulus

attribute), 162

P
PALETTE (geopyspark.ColorSpace attribute), 82
PALETTE (geopyspark.geotrellis.constants.ColorSpace

attribute), 134
param_1 (geopyspark.Annulus attribute), 109
param_1 (geopyspark.Circle attribute), 108
param_1 (geopyspark.geotrellis.neighborhood.Annulus

attribute), 162
param_1 (geopyspark.geotrellis.neighborhood.Circle at-

tribute), 160
param_1 (geopyspark.geotrellis.neighborhood.Nesw at-

tribute), 161
param_1 (geopyspark.geotrellis.neighborhood.Wedge at-

tribute), 161
param_1 (geopyspark.Nesw attribute), 108
param_1 (geopyspark.Wedge attribute), 108
param_2 (geopyspark.Annulus attribute), 109
param_2 (geopyspark.Circle attribute), 108
param_2 (geopyspark.geotrellis.neighborhood.Annulus

attribute), 162
param_2 (geopyspark.geotrellis.neighborhood.Circle at-

tribute), 160
param_2 (geopyspark.geotrellis.neighborhood.Nesw at-

tribute), 161
param_2 (geopyspark.geotrellis.neighborhood.Wedge at-

tribute), 161
param_2 (geopyspark.Nesw attribute), 108
param_2 (geopyspark.Wedge attribute), 108
param_3 (geopyspark.Annulus attribute), 109
param_3 (geopyspark.Circle attribute), 108
param_3 (geopyspark.geotrellis.neighborhood.Annulus

attribute), 162
param_3 (geopyspark.geotrellis.neighborhood.Circle at-

tribute), 160
param_3 (geopyspark.geotrellis.neighborhood.Nesw at-

tribute), 161
param_3 (geopyspark.geotrellis.neighborhood.Wedge at-

tribute), 161
param_3 (geopyspark.Nesw attribute), 109
param_3 (geopyspark.Wedge attribute), 108

partitionBy() (geopyspark.geotrellis.layer.RasterLayer
method), 142

partitionBy() (geopyspark.geotrellis.layer.TiledRasterLayer
method), 153

partitionBy() (geopyspark.RasterLayer method), 89
partitionBy() (geopyspark.TiledRasterLayer method),

100
persist() (geopyspark.geotrellis.layer.Pyramid method),

160
persist() (geopyspark.geotrellis.layer.RasterLayer

method), 143
persist() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 154
persist() (geopyspark.Pyramid method), 107
persist() (geopyspark.RasterLayer method), 89
persist() (geopyspark.TiledRasterLayer method), 101
PLASMA (geopyspark.ColorRamp attribute), 81
PLASMA (geopyspark.geotrellis.constants.ColorRamp

attribute), 133
polygonal_max() (geopys-

park.geotrellis.layer.TiledRasterLayer method),
154

polygonal_max() (geopyspark.TiledRasterLayer
method), 101

polygonal_mean() (geopys-
park.geotrellis.layer.TiledRasterLayer method),
154

polygonal_mean() (geopyspark.TiledRasterLayer
method), 101

polygonal_min() (geopys-
park.geotrellis.layer.TiledRasterLayer method),
154

polygonal_min() (geopyspark.TiledRasterLayer method),
101

polygonal_sum() (geopys-
park.geotrellis.layer.TiledRasterLayer method),
154

polygonal_sum() (geopyspark.TiledRasterLayer method),
101

port (geopyspark.geotrellis.tms.TMS attribute), 165
port (geopyspark.TMS attribute), 111, 112
proj4 (geopyspark.geotrellis.ProjectedExtent attribute),

117, 118
proj4 (geopyspark.geotrellis.TemporalProjectedExtent at-

tribute), 118
proj4 (geopyspark.ProjectedExtent attribute), 65
proj4 (geopyspark.TemporalProjectedExtent attribute), 66
ProjectedExtent (class in geopyspark), 65
ProjectedExtent (class in geopyspark.geotrellis), 117
Properties (class in geopyspark), 113
Properties (class in geopyspark.vector_pipe), 166
properties (geopyspark.Feature attribute), 113
properties (geopyspark.vector_pipe.Feature attribute),

166

182 Index

GeoPySpark Documentation, Release 0.4.1

protobuf (in module geopyspark.geotrellis), 162
ProtoBufSerializer (class in geopys-

park.geotrellis.protobufserializer), 162
Pyramid (class in geopyspark), 106
Pyramid (class in geopyspark.geotrellis.layer), 159
pyramid() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 155
pyramid() (geopyspark.TiledRasterLayer method), 101
pysc (geopyspark.geotrellis.layer.Pyramid attribute), 159
pysc (geopyspark.geotrellis.layer.RasterLayer attribute),

139
pysc (geopyspark.geotrellis.layer.TiledRasterLayer at-

tribute), 146
pysc (geopyspark.geotrellis.tms.TMS attribute), 164
pysc (geopyspark.Pyramid attribute), 106, 107
pysc (geopyspark.RasterLayer attribute), 85, 89
pysc (geopyspark.TiledRasterLayer attribute), 93, 102
pysc (geopyspark.TMS attribute), 111

Q
quantile_breaks() (geopys-

park.geotrellis.histogram.Histogram method),
138

quantile_breaks() (geopyspark.Histogram method), 85
query() (in module geopyspark), 74
query() (in module geopyspark.geotrellis.catalog), 125

R
radius (geopyspark.Circle attribute), 107
radius (geopyspark.geotrellis.neighborhood.Circle

attribute), 160
radius (geopyspark.geotrellis.neighborhood.Wedge at-

tribute), 161
radius (geopyspark.Wedge attribute), 108
rasterize() (in module geopyspark), 109
rasterize() (in module geopyspark.geotrellis.rasterize),

163
rasterize_features() (in module geopyspark), 110
rasterize_features() (in module geopys-

park.geotrellis.rasterize), 163
RasterizerOptions (class in geopyspark), 70
RasterizerOptions (class in geopyspark.geotrellis), 122
RasterLayer (class in geopyspark), 85
RasterLayer (class in geopyspark.geotrellis.layer), 138
read() (geopyspark.AttributeStore.Attributes method), 76
read() (geopyspark.geotrellis.catalog.AttributeStore.Attributes

method), 127
read_layer_metadata() (in module geopyspark), 73
read_layer_metadata() (in module geopys-

park.geotrellis.catalog), 124
read_value() (in module geopyspark), 73
read_value() (in module geopyspark.geotrellis.catalog),

124

reclassify() (geopyspark.geotrellis.layer.RasterLayer
method), 143

reclassify() (geopyspark.geotrellis.layer.TiledRasterLayer
method), 155

reclassify() (geopyspark.RasterLayer method), 89
reclassify() (geopyspark.TiledRasterLayer method), 102
render_function (geopyspark.geotrellis.tms.TileRender

attribute), 164
render_function (geopyspark.TileRender attribute), 110
renderEncoded() (geopyspark.geotrellis.tms.TileRender

method), 164
renderEncoded() (geopyspark.TileRender method), 111
repartition() (geopyspark.geotrellis.layer.RasterLayer

method), 143
repartition() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 156
repartition() (geopyspark.RasterLayer method), 90
repartition() (geopyspark.TiledRasterLayer method), 103
reproject() (geopyspark.geotrellis.layer.RasterLayer

method), 143
reproject() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 156
reproject() (geopyspark.RasterLayer method), 90
reproject() (geopyspark.TiledRasterLayer method), 103
requiresEncoding() (geopyspark.TileRender method),

111
ResampleMethod (class in geopyspark), 79
ResampleMethod (class in geopys-

park.geotrellis.constants), 131
RGB (geopyspark.ColorSpace attribute), 82
RGB (geopyspark.geotrellis.constants.ColorSpace

attribute), 134
row (geopyspark.geotrellis.SpaceTimeKey attribute), 122
row (geopyspark.geotrellis.SpatialKey attribute), 122
row (geopyspark.SpaceTimeKey attribute), 67
row (geopyspark.SpatialKey attribute), 66
ROWMAJOR (geopys-

park.geotrellis.constants.IndexingMethod
attribute), 131

ROWMAJOR (geopyspark.IndexingMethod attribute), 79

S
sampleType (geopyspark.geotrellis.RasterizerOptions at-

tribute), 123
sampleType (geopyspark.RasterizerOptions attribute), 71
save_stitched() (geopys-

park.geotrellis.layer.TiledRasterLayer method),
156

save_stitched() (geopyspark.TiledRasterLayer method),
103

scala_features (geopys-
park.vector_pipe.features_collection.FeaturesCollection
attribute), 169

Index 183

GeoPySpark Documentation, Release 0.4.1

scala_histogram (geopys-
park.geotrellis.histogram.Histogram attribute),
137

scala_histogram (geopyspark.Histogram attribute), 84
SECONDS (geopyspark.geotrellis.constants.TimeUnit at-

tribute), 131
SECONDS (geopyspark.TimeUnit attribute), 80
server (geopyspark.geotrellis.tms.TMS attribute), 165
server (geopyspark.TMS attribute), 111
set_handshake() (geopyspark.TMS method), 112
slope() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 156
slope() (geopyspark.TiledRasterLayer method), 103
SPACETIME (geopyspark.geotrellis.constants.LayerType

attribute), 130
SPACETIME (geopyspark.LayerType attribute), 79
SpaceTimeKey (class in geopyspark), 66
SpaceTimeKey (class in geopyspark.geotrellis), 122
SpaceTimePartitionStrategy (class in geopyspark), 72
SPATIAL (geopyspark.geotrellis.constants.LayerType at-

tribute), 130
SPATIAL (geopyspark.LayerType attribute), 79
SpatialKey (class in geopyspark), 66
SpatialKey (class in geopyspark.geotrellis), 121
SpatialPartitionStrategy (class in geopyspark), 71
Square (class in geopyspark), 107
SQUARE (geopyspark.geotrellis.constants.Neighborhood

attribute), 132
SQUARE (geopyspark.Neighborhood attribute), 80
srdd (geopyspark.geotrellis.layer.RasterLayer attribute),

139
srdd (geopyspark.geotrellis.layer.TiledRasterLayer

attribute), 146
srdd (geopyspark.RasterLayer attribute), 85, 90
srdd (geopyspark.TiledRasterLayer attribute), 93, 103
STANDARD_DEVIATION (geopys-

park.geotrellis.constants.Operation attribute),
132

STANDARD_DEVIATION (geopyspark.Operation at-
tribute), 80

star_series() (geopyspark.TiledRasterLayer method), 104
start_angle (geopyspark.geotrellis.neighborhood.Wedge

attribute), 161
start_angle (geopyspark.Wedge attribute), 108
stitch() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 156
stitch() (geopyspark.TiledRasterLayer method), 104
StorageMethod (class in geopyspark), 81
StorageMethod (class in geopyspark.geotrellis.constants),

133
STRIPED (geopyspark.geotrellis.constants.StorageMethod

attribute), 133
STRIPED (geopyspark.StorageMethod attribute), 82

SUM (geopyspark.geotrellis.constants.Operation at-
tribute), 132

SUM (geopyspark.Operation attribute), 80
sum_series() (geopyspark.TiledRasterLayer method), 104

T
tags (geopyspark.Properties attribute), 114
tags (geopyspark.vector_pipe.Properties attribute), 167,

168
TemporalProjectedExtent (class in geopyspark), 65
TemporalProjectedExtent (class in geopyspark.geotrellis),

118
threshold (geopyspark.geotrellis.GlobalLayout attribute),

119
threshold (geopyspark.GlobalLayout attribute), 69
Tile (class in geopyspark), 63
Tile (class in geopyspark.geotrellis), 115
tile_cols (geopyspark.geotrellis.LocalLayout attribute),

120
tile_cols (geopyspark.LocalLayout attribute), 69
tile_layout (geopyspark.geotrellis.Metadata attribute),

124
tile_layout (geopyspark.Metadata attribute), 67
tile_rows (geopyspark.geotrellis.LocalLayout attribute),

120
tile_rows (geopyspark.LocalLayout attribute), 69, 70
tile_size (geopyspark.geotrellis.GlobalLayout attribute),

119
tile_size (geopyspark.GlobalLayout attribute), 69
tile_to_layout() (geopyspark.geotrellis.layer.RasterLayer

method), 144
tile_to_layout() (geopys-

park.geotrellis.layer.TiledRasterLayer method),
157

tile_to_layout() (geopyspark.RasterLayer method), 90
tile_to_layout() (geopyspark.TiledRasterLayer method),

104
tileCols (geopyspark.geotrellis.TileLayout attribute), 121
tileCols (geopyspark.TileLayout attribute), 68
TILED (geopyspark.geotrellis.constants.StorageMethod

attribute), 133
TILED (geopyspark.StorageMethod attribute), 82
TiledRasterLayer (class in geopyspark), 92
TiledRasterLayer (class in geopyspark.geotrellis.layer),

146
TileLayout (class in geopyspark), 68
TileLayout (class in geopyspark.geotrellis), 120
tileLayout (geopyspark.geotrellis.LayoutDefinition at-

tribute), 121
tileLayout (geopyspark.LayoutDefinition attribute), 70
TileRender (class in geopyspark), 110
TileRender (class in geopyspark.geotrellis.tms), 164
TileRender.Java (class in geopyspark), 110

184 Index

GeoPySpark Documentation, Release 0.4.1

tileRows (geopyspark.geotrellis.TileLayout attribute),
121

tileRows (geopyspark.TileLayout attribute), 68
time_resolution (geopyspark.SpaceTimePartitionStrategy

attribute), 73
time_unit (geopyspark.SpaceTimePartitionStrategy at-

tribute), 73
timestamp (geopyspark.Properties attribute), 114
timestamp (geopyspark.vector_pipe.Properties attribute),

167, 168
TimeUnit (class in geopyspark), 80
TimeUnit (class in geopyspark.geotrellis.constants), 131
TMS (class in geopyspark), 111
TMS (class in geopyspark.geotrellis.tms), 164
to_dict() (geopyspark.geotrellis.histogram.Histogram

method), 138
to_dict() (geopyspark.geotrellis.Metadata method), 124
to_dict() (geopyspark.Histogram method), 85
to_dict() (geopyspark.Metadata method), 68
to_geotiff_rdd() (geopyspark.geotrellis.layer.RasterLayer

method), 144
to_geotiff_rdd() (geopys-

park.geotrellis.layer.TiledRasterLayer method),
157

to_geotiff_rdd() (geopyspark.RasterLayer method), 91
to_geotiff_rdd() (geopyspark.TiledRasterLayer method),

104
to_numpy_rdd() (geopyspark.geotrellis.layer.RasterLayer

method), 145
to_numpy_rdd() (geopys-

park.geotrellis.layer.TiledRasterLayer method),
158

to_numpy_rdd() (geopyspark.RasterLayer method), 91
to_numpy_rdd() (geopyspark.TiledRasterLayer method),

105
to_png_rdd() (geopyspark.geotrellis.layer.RasterLayer

method), 145
to_png_rdd() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 158
to_png_rdd() (geopyspark.RasterLayer method), 92
to_png_rdd() (geopyspark.TiledRasterLayer method),

105
to_polygon (geopyspark.Extent attribute), 64
to_polygon (geopyspark.geotrellis.Extent attribute), 117
to_spatial_layer() (geopys-

park.geotrellis.layer.RasterLayer method),
145

to_spatial_layer() (geopys-
park.geotrellis.layer.TiledRasterLayer method),
158

to_spatial_layer() (geopyspark.RasterLayer method), 92
to_spatial_layer() (geopyspark.TiledRasterLayer

method), 105
tobler() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 158
tobler() (geopyspark.TiledRasterLayer method), 105
TRANSPARENCY_MASK (geopyspark.ColorSpace at-

tribute), 82
TRANSPARENCY_MASK (geopys-

park.geotrellis.constants.ColorSpace attribute),
134

U
uid (geopyspark.Properties attribute), 114
uid (geopyspark.vector_pipe.Properties attribute), 167,

168
UINT16 (geopyspark.CellType attribute), 81
UINT16 (geopyspark.geotrellis.constants.CellType at-

tribute), 132
UINT16RAW (geopyspark.CellType attribute), 81
UINT16RAW (geopyspark.geotrellis.constants.CellType

attribute), 132
UINT8 (geopyspark.CellType attribute), 81
UINT8 (geopyspark.geotrellis.constants.CellType at-

tribute), 133
UINT8RAW (geopyspark.CellType attribute), 81
UINT8RAW (geopyspark.geotrellis.constants.CellType

attribute), 133
unbind() (geopyspark.geotrellis.tms.TMS method), 165
unbind() (geopyspark.TMS method), 112
union() (in module geopyspark), 112
union() (in module geopyspark.geotrellis.union), 166
Unit (class in geopyspark), 82
Unit (class in geopyspark.geotrellis.constants), 134
unpersist() (geopyspark.geotrellis.layer.Pyramid method),

160
unpersist() (geopyspark.geotrellis.layer.RasterLayer

method), 145
unpersist() (geopyspark.geotrellis.layer.TiledRasterLayer

method), 158
unpersist() (geopyspark.Pyramid method), 107
unpersist() (geopyspark.RasterLayer method), 92
unpersist() (geopyspark.TiledRasterLayer method), 106
url_pattern (geopyspark.geotrellis.tms.TMS attribute),

165
url_pattern (geopyspark.TMS attribute), 111, 112
user (geopyspark.Properties attribute), 114
user (geopyspark.vector_pipe.Properties attribute), 167,

168

V
value (geopyspark.CellValue attribute), 115
value (geopyspark.vector_pipe.CellValue attribute), 168
values() (geopyspark.geotrellis.histogram.Histogram

method), 138
values() (geopyspark.Histogram method), 85
VARIANCE (geopyspark.geotrellis.constants.Operation

attribute), 132

Index 185

GeoPySpark Documentation, Release 0.4.1

VARIANCE (geopyspark.Operation attribute), 80
version (geopyspark.Properties attribute), 114
version (geopyspark.vector_pipe.Properties attribute),

167, 168
VIRIDIS (geopyspark.ColorRamp attribute), 81
VIRIDIS (geopyspark.geotrellis.constants.ColorRamp at-

tribute), 133
visible (geopyspark.Properties attribute), 114
visible (geopyspark.vector_pipe.Properties attribute),

167, 168

W
Wedge (class in geopyspark), 108
Wedge (class in geopyspark.geotrellis.neighborhood),

161
WEDGE (geopyspark.geotrellis.constants.Neighborhood

attribute), 132
WEDGE (geopyspark.Neighborhood attribute), 80
WEEKS (geopyspark.geotrellis.constants.TimeUnit at-

tribute), 131
WEEKS (geopyspark.TimeUnit attribute), 80
WHITE_IS_ZERO (geopyspark.ColorSpace attribute),

82
WHITE_IS_ZERO (geopys-

park.geotrellis.constants.ColorSpace attribute),
134

with_no_data() (geopyspark.geotrellis.layer.RasterLayer
method), 145

with_no_data() (geopys-
park.geotrellis.layer.TiledRasterLayer method),
158

with_no_data() (geopyspark.RasterLayer method), 92
with_no_data() (geopyspark.TiledRasterLayer method),

106
wrapped_rdds() (geopyspark.geotrellis.layer.Pyramid

method), 160
wrapped_rdds() (geopyspark.geotrellis.layer.RasterLayer

method), 146
wrapped_rdds() (geopys-

park.geotrellis.layer.TiledRasterLayer method),
159

wrapped_rdds() (geopyspark.Pyramid method), 107
wrapped_rdds() (geopyspark.RasterLayer method), 92
wrapped_rdds() (geopyspark.TiledRasterLayer method),

106
write() (geopyspark.AttributeStore.Attributes method),

76
write() (geopyspark.geotrellis.catalog.AttributeStore.Attributes

method), 127
write() (in module geopyspark), 75
write() (in module geopyspark.geotrellis.catalog), 126

X
xmax (geopyspark.Extent attribute), 64

xmax (geopyspark.geotrellis.Extent attribute), 117
xmin (geopyspark.Extent attribute), 64
xmin (geopyspark.geotrellis.Extent attribute), 116, 117

Y
Y_CB_CR (geopyspark.ColorSpace attribute), 82
Y_CB_CR (geopyspark.geotrellis.constants.ColorSpace

attribute), 134
YEARS (geopyspark.geotrellis.constants.TimeUnit at-

tribute), 131
YEARS (geopyspark.TimeUnit attribute), 80
ymax (geopyspark.Extent attribute), 64, 65
ymax (geopyspark.geotrellis.Extent attribute), 117
ymin (geopyspark.Extent attribute), 64, 65
ymin (geopyspark.geotrellis.Extent attribute), 117

Z
zfactor_calculator() (in module geopyspark), 71
zfactor_lat_lng_calculator() (in module geopyspark), 71
zindex (geopyspark.CellValue attribute), 115
zindex (geopyspark.vector_pipe.CellValue attribute), 168
zoom (geopyspark.geotrellis.GlobalLayout attribute), 119
zoom (geopyspark.GlobalLayout attribute), 69
zoom_level (geopyspark.geotrellis.layer.TiledRasterLayer

attribute), 146
zoom_level (geopyspark.TiledRasterLayer attribute), 93
ZORDER (geopyspark.geotrellis.constants.IndexingMethod

attribute), 131
ZORDER (geopyspark.IndexingMethod attribute), 79

186 Index

	Why GeoPySpark?
	Contact and Support
	Changelog
	Contributing
	Core Concepts
	Working With Layers
	Catalog
	Map Algebra
	Visualizing Data in GeoPySpark
	TMS Servers
	Ingesting an Image
	Reading in Sentinel-2 Images
	Reading and Rasterizing Open Street Map Data
	geopyspark package
	geopyspark.geotrellis package
	geopyspark.vector_pipe package

	Python Module Index

